ifmain commited on
Commit
3e7a3bb
·
verified ·
1 Parent(s): de4512c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -3
README.md CHANGED
@@ -1,3 +1,70 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Ar4ikov/civitai-sd-337k
4
+ language:
5
+ - en
6
+ pipeline_tag: image-to-text
7
+ base_model: nlpconnect/vit-gpt2-image-captioning
8
+ license: apache-2.0
9
+ ---
10
+
11
+ # Overview
12
+
13
+ The `ifmain/vit-gpt2-image2promt-stable-diffusion` model builds upon [nlpconnect/vit-gpt2-image-captioning](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning) and is trained on the [Ar4ikov/civitai-sd-337k](https://huggingface.co/datasets/Ar4ikov/civitai-sd-337k) dataset, which includes 2,000 images. This model is specifically designed to generate text descriptions of images in a format suitable for prompts used with Stable Diffusion models.
14
+
15
+ Training was conducted using the [Vit-GPT-Easy-Trainer](https://github.com/ifmain/Vit-GPT-Easy-Trainer) code.
16
+
17
+ # Example Usage
18
+
19
+ ```python
20
+ from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
21
+ import torch
22
+ from PIL import Image
23
+ import re
24
+
25
+ def prepare(text):
26
+ text = text.replace('. ', '.').replace(' .', '.')
27
+ text = text.replace('( ', '(').replace(' (', '(')
28
+ text = text.replace(') ', ')').replace(' )', ')')
29
+ text = text.replace(': ', ':').replace(' :', ':')
30
+ text = text.replace('_ ', '_').replace(' _', '_')
31
+ text = text.replace(',(())', '').replace('(()),', '')
32
+ for i in range(10):
33
+ text = text.replace(')))', '))').replace('(((', '((')
34
+ text = re.sub(r'<[^>]*>', '', text)
35
+ return text
36
+
37
+ model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
38
+ feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
39
+ tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
40
+
41
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
42
+ model.to(device)
43
+
44
+ max_length = 16
45
+ num_beams = 4
46
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
47
+ def predict_step(image_paths):
48
+ images = []
49
+ for image_path in image_paths:
50
+ i_image = Image.open(image_path)
51
+ if i_image.mode != "RGB":
52
+ i_image = i_image.convert(mode="RGB")
53
+
54
+ images.append(i_image)
55
+
56
+ pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
57
+ pixel_values = pixel_values.to(device)
58
+
59
+ output_ids = model.generate(pixel_values, **gen_kwargs)
60
+
61
+ preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
62
+ preds = [prepare(pred).strip() for pred in preds]
63
+ return preds
64
+
65
+ predict_step(['doctor.e16ba4e4.jpg']) # ['a woman in a hospital bed with a woman in a hospital bed']
66
+ ```
67
+
68
+ ## Additional Information
69
+
70
+ This model supports both SFW and NSFW content.