iddqd21 commited on
Commit
93bd527
·
verified ·
1 Parent(s): f0f6676

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:110819
8
+ - loss:CosineSimilarityLoss
9
+ base_model: intfloat/multilingual-e5-base
10
+ widget:
11
+ - source_sentence: UR-144 pentanoate
12
+ sentences:
13
+ - Etodolac
14
+ - Decenoate
15
+ - Glucose^6th specimen post XXX challenge
16
+ - source_sentence: Índice de captación de triyodotironina / triyodotironina
17
+ sentences:
18
+ - Cells.CD3+CD45+/100 cells
19
+ - Triiodothyronine/Triiodothyronine uptake index
20
+ - Prolactin^2nd specimen post XXX challenge
21
+ - source_sentence: Aldosteron in Serum oder Plasma
22
+ sentences:
23
+ - Ethyl benzene
24
+ - Aldosterone
25
+ - Methoxychlor
26
+ - source_sentence: Glucose 240 min (oGTT)
27
+ sentences:
28
+ - 17-Hydroxyprogesterone^30M post 250 ug corticotropin IM
29
+ - Hexadecenoate
30
+ - Glucose^4H post 75 g glucose PO
31
+ - source_sentence: Tiglylcarnitine+methylcrotonylcarnitine (C5:1)
32
+ sentences:
33
+ - Lymphocyte proliferation.OKT3 stimulation
34
+ - Adenosine monophosphate.cyclic
35
+ - Adenosine monophosphate.cyclic
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on intfloat/multilingual-e5-base
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision d13f1b27baf31030b7fd040960d60d909913633f -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 768 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Normalize()
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("iddqd21/fine-tuned-e5-semantic-similarity_v2")
88
+ # Run inference
89
+ sentences = [
90
+ 'Tiglylcarnitine+methylcrotonylcarnitine (C5:1)',
91
+ 'Adenosine monophosphate.cyclic',
92
+ 'Adenosine monophosphate.cyclic',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 768]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 110,819 training samples
148
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
149
+ * Approximate statistics based on the first 1000 samples:
150
+ | | sentence_0 | sentence_1 | label |
151
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
152
+ | type | string | string | float |
153
+ | details | <ul><li>min: 3 tokens</li><li>mean: 10.97 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.19 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.41</li><li>max: 1.0</li></ul> |
154
+ * Samples:
155
+ | sentence_0 | sentence_1 | label |
156
+ |:---------------------------|:---------------------------|:-----------------|
157
+ | <code>Methocarbamol</code> | <code>Methocarbamol</code> | <code>1.0</code> |
158
+ | <code>Busulfan</code> | <code>Psilocin</code> | <code>0.0</code> |
159
+ | <code>Zirconium</code> | <code>Strychnine</code> | <code>0.0</code> |
160
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
161
+ ```json
162
+ {
163
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
164
+ }
165
+ ```
166
+
167
+ ### Training Hyperparameters
168
+ #### Non-Default Hyperparameters
169
+
170
+ - `per_device_train_batch_size`: 16
171
+ - `per_device_eval_batch_size`: 16
172
+ - `num_train_epochs`: 5
173
+ - `multi_dataset_batch_sampler`: round_robin
174
+
175
+ #### All Hyperparameters
176
+ <details><summary>Click to expand</summary>
177
+
178
+ - `overwrite_output_dir`: False
179
+ - `do_predict`: False
180
+ - `eval_strategy`: no
181
+ - `prediction_loss_only`: True
182
+ - `per_device_train_batch_size`: 16
183
+ - `per_device_eval_batch_size`: 16
184
+ - `per_gpu_train_batch_size`: None
185
+ - `per_gpu_eval_batch_size`: None
186
+ - `gradient_accumulation_steps`: 1
187
+ - `eval_accumulation_steps`: None
188
+ - `torch_empty_cache_steps`: None
189
+ - `learning_rate`: 5e-05
190
+ - `weight_decay`: 0.0
191
+ - `adam_beta1`: 0.9
192
+ - `adam_beta2`: 0.999
193
+ - `adam_epsilon`: 1e-08
194
+ - `max_grad_norm`: 1
195
+ - `num_train_epochs`: 5
196
+ - `max_steps`: -1
197
+ - `lr_scheduler_type`: linear
198
+ - `lr_scheduler_kwargs`: {}
199
+ - `warmup_ratio`: 0.0
200
+ - `warmup_steps`: 0
201
+ - `log_level`: passive
202
+ - `log_level_replica`: warning
203
+ - `log_on_each_node`: True
204
+ - `logging_nan_inf_filter`: True
205
+ - `save_safetensors`: True
206
+ - `save_on_each_node`: False
207
+ - `save_only_model`: False
208
+ - `restore_callback_states_from_checkpoint`: False
209
+ - `no_cuda`: False
210
+ - `use_cpu`: False
211
+ - `use_mps_device`: False
212
+ - `seed`: 42
213
+ - `data_seed`: None
214
+ - `jit_mode_eval`: False
215
+ - `use_ipex`: False
216
+ - `bf16`: False
217
+ - `fp16`: False
218
+ - `fp16_opt_level`: O1
219
+ - `half_precision_backend`: auto
220
+ - `bf16_full_eval`: False
221
+ - `fp16_full_eval`: False
222
+ - `tf32`: None
223
+ - `local_rank`: 0
224
+ - `ddp_backend`: None
225
+ - `tpu_num_cores`: None
226
+ - `tpu_metrics_debug`: False
227
+ - `debug`: []
228
+ - `dataloader_drop_last`: False
229
+ - `dataloader_num_workers`: 0
230
+ - `dataloader_prefetch_factor`: None
231
+ - `past_index`: -1
232
+ - `disable_tqdm`: False
233
+ - `remove_unused_columns`: True
234
+ - `label_names`: None
235
+ - `load_best_model_at_end`: False
236
+ - `ignore_data_skip`: False
237
+ - `fsdp`: []
238
+ - `fsdp_min_num_params`: 0
239
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
240
+ - `fsdp_transformer_layer_cls_to_wrap`: None
241
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
242
+ - `deepspeed`: None
243
+ - `label_smoothing_factor`: 0.0
244
+ - `optim`: adamw_torch
245
+ - `optim_args`: None
246
+ - `adafactor`: False
247
+ - `group_by_length`: False
248
+ - `length_column_name`: length
249
+ - `ddp_find_unused_parameters`: None
250
+ - `ddp_bucket_cap_mb`: None
251
+ - `ddp_broadcast_buffers`: False
252
+ - `dataloader_pin_memory`: True
253
+ - `dataloader_persistent_workers`: False
254
+ - `skip_memory_metrics`: True
255
+ - `use_legacy_prediction_loop`: False
256
+ - `push_to_hub`: False
257
+ - `resume_from_checkpoint`: None
258
+ - `hub_model_id`: None
259
+ - `hub_strategy`: every_save
260
+ - `hub_private_repo`: None
261
+ - `hub_always_push`: False
262
+ - `gradient_checkpointing`: False
263
+ - `gradient_checkpointing_kwargs`: None
264
+ - `include_inputs_for_metrics`: False
265
+ - `include_for_metrics`: []
266
+ - `eval_do_concat_batches`: True
267
+ - `fp16_backend`: auto
268
+ - `push_to_hub_model_id`: None
269
+ - `push_to_hub_organization`: None
270
+ - `mp_parameters`:
271
+ - `auto_find_batch_size`: False
272
+ - `full_determinism`: False
273
+ - `torchdynamo`: None
274
+ - `ray_scope`: last
275
+ - `ddp_timeout`: 1800
276
+ - `torch_compile`: False
277
+ - `torch_compile_backend`: None
278
+ - `torch_compile_mode`: None
279
+ - `dispatch_batches`: None
280
+ - `split_batches`: None
281
+ - `include_tokens_per_second`: False
282
+ - `include_num_input_tokens_seen`: False
283
+ - `neftune_noise_alpha`: None
284
+ - `optim_target_modules`: None
285
+ - `batch_eval_metrics`: False
286
+ - `eval_on_start`: False
287
+ - `use_liger_kernel`: False
288
+ - `eval_use_gather_object`: False
289
+ - `average_tokens_across_devices`: False
290
+ - `prompts`: None
291
+ - `batch_sampler`: batch_sampler
292
+ - `multi_dataset_batch_sampler`: round_robin
293
+
294
+ </details>
295
+
296
+ ### Training Logs
297
+ | Epoch | Step | Training Loss |
298
+ |:------:|:-----:|:-------------:|
299
+ | 0.0722 | 500 | 0.1227 |
300
+ | 0.1444 | 1000 | 0.0772 |
301
+ | 0.2165 | 1500 | 0.0726 |
302
+ | 0.2887 | 2000 | 0.0668 |
303
+ | 0.3609 | 2500 | 0.0617 |
304
+ | 0.4331 | 3000 | 0.0615 |
305
+ | 0.5053 | 3500 | 0.056 |
306
+ | 0.5775 | 4000 | 0.0562 |
307
+ | 0.6496 | 4500 | 0.0596 |
308
+ | 0.7218 | 5000 | 0.0576 |
309
+ | 0.7940 | 5500 | 0.0531 |
310
+ | 0.8662 | 6000 | 0.0524 |
311
+ | 0.9384 | 6500 | 0.0544 |
312
+ | 1.0105 | 7000 | 0.0502 |
313
+ | 1.0827 | 7500 | 0.0411 |
314
+ | 1.1549 | 8000 | 0.0417 |
315
+ | 1.2271 | 8500 | 0.0451 |
316
+ | 1.2993 | 9000 | 0.041 |
317
+ | 1.3714 | 9500 | 0.0407 |
318
+ | 1.4436 | 10000 | 0.0412 |
319
+ | 1.5158 | 10500 | 0.0403 |
320
+ | 1.5880 | 11000 | 0.0407 |
321
+ | 1.6602 | 11500 | 0.0423 |
322
+ | 1.7324 | 12000 | 0.0385 |
323
+ | 1.8045 | 12500 | 0.039 |
324
+ | 1.8767 | 13000 | 0.0392 |
325
+ | 1.9489 | 13500 | 0.0366 |
326
+ | 2.0211 | 14000 | 0.0344 |
327
+ | 2.0933 | 14500 | 0.0312 |
328
+ | 2.1654 | 15000 | 0.0321 |
329
+ | 2.2376 | 15500 | 0.0311 |
330
+ | 2.3098 | 16000 | 0.0305 |
331
+ | 2.3820 | 16500 | 0.032 |
332
+ | 2.4542 | 17000 | 0.031 |
333
+ | 2.5263 | 17500 | 0.0284 |
334
+ | 2.5985 | 18000 | 0.0291 |
335
+ | 2.6707 | 18500 | 0.0318 |
336
+ | 2.7429 | 19000 | 0.0308 |
337
+ | 2.8151 | 19500 | 0.0292 |
338
+ | 2.8873 | 20000 | 0.0297 |
339
+ | 2.9594 | 20500 | 0.03 |
340
+ | 3.0316 | 21000 | 0.0268 |
341
+ | 3.1038 | 21500 | 0.0232 |
342
+ | 3.1760 | 22000 | 0.0239 |
343
+ | 3.2482 | 22500 | 0.0256 |
344
+ | 3.3203 | 23000 | 0.0248 |
345
+ | 3.3925 | 23500 | 0.0261 |
346
+ | 3.4647 | 24000 | 0.0244 |
347
+ | 3.5369 | 24500 | 0.0248 |
348
+ | 3.6091 | 25000 | 0.0231 |
349
+ | 3.6812 | 25500 | 0.0238 |
350
+ | 3.7534 | 26000 | 0.0242 |
351
+ | 3.8256 | 26500 | 0.0234 |
352
+ | 3.8978 | 27000 | 0.0249 |
353
+ | 3.9700 | 27500 | 0.0253 |
354
+ | 4.0422 | 28000 | 0.0218 |
355
+ | 4.1143 | 28500 | 0.0208 |
356
+ | 4.1865 | 29000 | 0.0201 |
357
+ | 4.2587 | 29500 | 0.0208 |
358
+ | 4.3309 | 30000 | 0.0205 |
359
+ | 4.4031 | 30500 | 0.0217 |
360
+ | 4.4752 | 31000 | 0.0193 |
361
+ | 4.5474 | 31500 | 0.0204 |
362
+ | 4.6196 | 32000 | 0.0202 |
363
+ | 4.6918 | 32500 | 0.0199 |
364
+ | 4.7640 | 33000 | 0.0205 |
365
+ | 4.8361 | 33500 | 0.0211 |
366
+ | 4.9083 | 34000 | 0.0213 |
367
+ | 4.9805 | 34500 | 0.02 |
368
+
369
+
370
+ ### Framework Versions
371
+ - Python: 3.9.20
372
+ - Sentence Transformers: 3.3.1
373
+ - Transformers: 4.47.1
374
+ - PyTorch: 2.5.1+rocm6.2
375
+ - Accelerate: 1.2.1
376
+ - Datasets: 3.2.0
377
+ - Tokenizers: 0.21.0
378
+
379
+ ## Citation
380
+
381
+ ### BibTeX
382
+
383
+ #### Sentence Transformers
384
+ ```bibtex
385
+ @inproceedings{reimers-2019-sentence-bert,
386
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
387
+ author = "Reimers, Nils and Gurevych, Iryna",
388
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
389
+ month = "11",
390
+ year = "2019",
391
+ publisher = "Association for Computational Linguistics",
392
+ url = "https://arxiv.org/abs/1908.10084",
393
+ }
394
+ ```
395
+
396
+ <!--
397
+ ## Glossary
398
+
399
+ *Clearly define terms in order to be accessible across audiences.*
400
+ -->
401
+
402
+ <!--
403
+ ## Model Card Authors
404
+
405
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
406
+ -->
407
+
408
+ <!--
409
+ ## Model Card Contact
410
+
411
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
412
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.47.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+rocm6.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a0e3bc2d0d7afde46ee5962ac74da0a804f0071d58b612372193af164cf9a9a
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }