ichiv commited on
Commit
b34c21c
·
1 Parent(s): a17555e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - SpaceInvadersNoFrameskip-v4
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: SpaceInvadersNoFrameskip-v4
16
+ type: SpaceInvadersNoFrameskip-v4
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 112.00 +/- 55.37
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
25
+ This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ichiv -f logs/
47
+ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ichiv -f logs/
53
+ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ichiv
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 32),
66
+ ('buffer_size', 256),
67
+ ('env_wrapper',
68
+ ['stable_baselines3.common.atari_wrappers.AtariWrapper']),
69
+ ('exploration_final_eps', 0.01),
70
+ ('exploration_fraction', 0.2),
71
+ ('frame_stack', 8),
72
+ ('gradient_steps', 1),
73
+ ('learning_rate', 0.001),
74
+ ('learning_starts', 1000),
75
+ ('n_timesteps', 100.0),
76
+ ('optimize_memory_usage', False),
77
+ ('policy', 'CnnPolicy'),
78
+ ('target_update_interval', 1000),
79
+ ('train_freq', 2),
80
+ ('normalize', False)])
81
+ ```
dqn-SpaceInvadersNoFrameskip-v4.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0188197607df17a110acd2aefdbe8faa5c95f49f87ff33a9cb35f89b43925320
3
  size 13965841
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afff46d0ab7e965db79b97d423d1475a197b4d70d42964455e89628128edc6b1
3
  size 13965841
dqn-SpaceInvadersNoFrameskip-v4/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCUNublBvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function CnnPolicy.__init__ at 0x0000022893C25F30>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x0000022893C2DA00>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {},
@@ -83,13 +83,13 @@
83
  ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
84
  "__module__": "stable_baselines3.common.buffers",
85
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
86
- "__init__": "<function ReplayBuffer.__init__ at 0x0000022893C01E10>",
87
- "add": "<function ReplayBuffer.add at 0x0000022893C01EA0>",
88
- "sample": "<function ReplayBuffer.sample at 0x0000022893C01F30>",
89
- "_get_samples": "<function ReplayBuffer._get_samples at 0x0000022893C01FC0>",
90
- "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x0000022893C02050>)>",
91
  "__abstractmethods__": "frozenset()",
92
- "_abc_impl": "<_abc._abc_data object at 0x000002288F330640>"
93
  },
94
  "replay_buffer_kwargs": {},
95
  "train_freq": {
 
4
  ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCUNublBvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function CnnPolicy.__init__ at 0x00000201736A5F30>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x00000201736ADB00>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {},
 
83
  ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
84
  "__module__": "stable_baselines3.common.buffers",
85
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
86
+ "__init__": "<function ReplayBuffer.__init__ at 0x0000020173681E10>",
87
+ "add": "<function ReplayBuffer.add at 0x0000020173681EA0>",
88
+ "sample": "<function ReplayBuffer.sample at 0x0000020173681F30>",
89
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x0000020173681FC0>",
90
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x0000020173682050>)>",
91
  "__abstractmethods__": "frozenset()",
92
+ "_abc_impl": "<_abc._abc_data object at 0x000002016EDB0640>"
93
  },
94
  "replay_buffer_kwargs": {},
95
  "train_freq": {
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 112.0, "std_reward": 55.37147279962851, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-10-23T21:29:23.173491"}