File size: 13,707 Bytes
e1ca61a
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78ad5db64dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78ad5db64e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78ad5db64ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78ad5db64f70>", "_build": "<function ActorCriticPolicy._build at 0x78ad5db65000>", "forward": "<function ActorCriticPolicy.forward at 0x78ad5db65090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78ad5db65120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78ad5db651b0>", "_predict": "<function ActorCriticPolicy._predict at 0x78ad5db65240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78ad5db652d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78ad5db65360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78ad5db653f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78ad5dcfe7c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 479104, "_total_timesteps": 200000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693255962362577674, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKDpN757wdA9LiTBvF4WGL7E7by8e4GUuwAAAAAAAAAAGMawvtaBZD390SM7PXyKuetUO77YMma6AACAPwAAgD/Yd+2+xe1GPk6NRj7KiF6+NAS9vLsu/zwAAAAAAAAAAJpNPb7XUT+7IrXxPSIZ6b0JGGQ8tiAtPQAAAAAAAAAAmh55vntUr7pSgvs8u8pPOIdJuDtyxUu5AAAAAAAAAACmOU2+SDOovEmeFbtfMhK5F60QPjNyOjoAAIA/AACAP9X6uL6vzl89GJKRO7qda7oIv4e+Fd+0OgAAgD8AAIA/zgavvslBDz8+uk6+LuOnvojc470vfpS8AAAAAAAAAABmCBM8o762Pz2j5T6KKLg+I08MvNZliL0AAAAAAAAAAMA1bb78pQo9gJd3t0Dn5rU/Tp2+sm02NgAAgD8AAIA/zd3RPUhHi7oKHEq6gswKNWpUkTnT0mo5AAAAAAAAgD+DeYg+qaRyP3Skmz5C3QO/8f09PmyewTsAAAAAAAAAAMNUfb6PuhU9Wl/CuhciYTnyA6q+zSTAOAAAgD8AAIA/GtHMPS7Cpj4YSsW9LaaCvpkIMzvgX+w8AAAAAAAAAABawyQ+qTN4vKMSGDsfbFO5rCXUvfXITboAAIA/AACAP81sYzsY54M+fkgqPDMEkL7Y3Jq8ftdwvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.99770624, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIJ5G8VYZGMAWyUTegDjAF0lEdAq2MHNA1NxnV9lChoBkdAXDnjLjghr2gHTegDaAhHQKtjrU3GXHB1fZQoaAZHQG9uGXHBDXxoB0v4aAhHQKtj9yPMjeN1fZQoaAZHQGrNcfms/6hoB022AWgIR0CrZA/dhy80dX2UKGgGR0BeUM/hVENOaAdN6ANoCEdAq2Q73sXzlXV9lChoBkdAafLf+CK77WgHTW0BaAhHQKtl1/y5I6N1fZQoaAZHQG93rCm/FitoB00mAWgIR0CrZh3kYGdJdX2UKGgGR0BhGi0jTrmhaAdN6ANoCEdAq2brtiQT23V9lChoBkdAReOJJoTPB2gHS81oCEdAq2fMkyDZlHV9lChoBkdAcUTfRNRFZ2gHTScBaAhHQKtpNC0F8oh1fZQoaAZHQHAu67qY7aJoB0vtaAhHQKtqBdIoVmB1fZQoaAZHQGHpPiLl3hZoB03oA2gIR0CragW8AaNudX2UKGgGR0Bvir1EmY0EaAdL82gIR0Crao/FirksdX2UKGgGR0BwL+j0th/iaAdL+WgIR0CratfdqL0jdX2UKGgGR0BvzITdtVJdaAdNDwFoCEdAq2u1QO4G2XV9lChoBkdAZxcGM4tHx2gHTUsBaAhHQKtr7gqmTDB1fZQoaAZHQHAoBttQ9A5oB0v4aAhHQKts7FxXGOx1fZQoaAZHQEVkQU5+6RRoB0vDaAhHQKttP5tWMjx1fZQoaAZHQGyA4lIEr5JoB00JAWgIR0Crbi7y6MBIdX2UKGgGR0Bw7XAbhm5EaAdL6WgIR0CrcGUx/NJOdX2UKGgGR0BxqICA+Y+jaAdL6mgIR0CrcG0bcXWOdX2UKGgGR0BtUcx7AtWdaAdNAAFoCEdAq3FhI4EOiHV9lChoBkdAbyL/ZM+NcWgHTQcBaAhHQKtyqnKGL1p1fZQoaAZHQG+KNlI3BHloB00CAWgIR0Crc2jo6jnFdX2UKGgGR0BhjBMcp9ZzaAdN6ANoCEdAq3OkEmplz3V9lChoBkdAYZO8q4H5amgHTegDaAhHQKtz9WCEpRZ1fZQoaAZHQHErZEH+qBFoB00TAWgIR0CrdA+OOsDGdX2UKGgGR0BusPsTnJT3aAdL+GgIR0CrdhQc5sCUdX2UKGgGR0BuRhe7cwg1aAdNAAFoCEdAq3Y8JKJ2uHV9lChoBkdAZ5ea0hNdq2gHTbgBaAhHQKt2eeHSF491fZQoaAZHQG0qFFlTWG1oB01kAWgIR0CrdqEzGgjAdX2UKGgGR0BafaS9ugpSaAdN6ANoCEdAq3ev09QoC3V9lChoBkdAPBpQgs9SuWgHS8poCEdAq3ftLcsUZnV9lChoBkdAYiMSLZSNwWgHTegDaAhHQKt4JQVsUIt1fZQoaAZHQG/inhS9/SZoB0vhaAhHQKt4434sVcl1fZQoaAZHQG7/paA4GUxoB0v/aAhHQKt5mThYNiJ1fZQoaAZHQHHdfVNHpbFoB00YAWgIR0Crebny/bj+dX2UKGgGR0AxlRZlnRLLaAdLw2gIR0CrejsQNCqqdX2UKGgGR0Bq1mT7l7tzaAdNoQFoCEdAq3qJvvSc9XV9lChoBkdAVxEOI68xsWgHTegDaAhHQKt7VaakRBh1fZQoaAZHQG2nNFBppN9oB00dAWgIR0CrfIGWt2cKdX2UKGgGR0BrbeKoAGSqaAdNMgFoCEdAq32T+rELpnV9lChoBkdAWu3Vf/m1Y2gHTegDaAhHQKt+ZicXm/51fZQoaAZHQG/46NuLrHFoB01gAWgIR0Crf9m1YyO8dX2UKGgGR0BnOkLORkmQaAdNPQFoCEdAq4Bu3vx6OnV9lChoBkdAcPxRceKba2gHS/VoCEdAq4Clb1RLsnV9lChoBkdAVecv0yxiX2gHTegDaAhHQKuBf/8VHnV1fZQoaAZHQHDec1CPZIxoB03DA2gIR0CrgfQN0/4ZdX2UKGgGR0BuFaJGe+VUaAdNIgFoCEdAq4KTisGPgnV9lChoBkdAa/HZ39rGi2gHS+poCEdAq4MyVII4VHV9lChoBkdAcIJ+5vtMPGgHTU8BaAhHQKuFi7HyVfN1fZQoaAZHQGtcSkTHsC1oB00IAWgIR0Crh0ZEtuk2dX2UKGgGR0BuNNqQA+6iaAdL+2gIR0CrtzhLwnYydX2UKGgGR0BvBASteUpvaAdNDAFoCEdAq7jKkEcKgXV9lChoBkdAcFhqBVdX1mgHTRMBaAhHQKu5f7gsK9h1fZQoaAZHQG8n+6Ae7tloB0v7aAhHQKu5mjt5UtJ1fZQoaAZHQGF4fdhy8z1oB03oA2gIR0CruzwV9F4LdX2UKGgGR0BmXbGJemelaAdNAgJoCEdAq7wNnkDIR3V9lChoBkdAcDNeA/cFhWgHS/VoCEdAq7wqOWBz3nV9lChoBkdAb5MLOzIFNmgHS+5oCEdAq71VLzwtrnV9lChoBkdAcFbspobn5mgHTSgBaAhHQKu/ROB19v11fZQoaAZHQGAOyYG+sYFoB03oA2gIR0Crv6Ce/YapdX2UKGgGR0Bya3atcObzaAdNNwFoCEdAq8GyaJAMUnV9lChoBkdAb1G7yxzJZGgHS+BoCEdAq8HXDWK/EnV9lChoBkdAYBaqBmPHUGgHTegDaAhHQKvCPu76Hj91fZQoaAZHQFv1pW3jMmpoB03oA2gIR0CrwqnUlRgrdX2UKGgGR0Bvx1L127nQaAdL32gIR0Crwu4e1a4ddX2UKGgGR8AyBoyKvV3EaAdL2mgIR0CrxGzoEB8ydX2UKGgGR0Bc5rjtG/etaAdN6ANoCEdAq8UsBuGbkXV9lChoBkdAXT7mA9V3lmgHTegDaAhHQKvFX/1g6U91fZQoaAZHQFx/7xd6cAloB03oA2gIR0CrxhbExZdOdX2UKGgGR0BnaVEiMYMwaAdNngFoCEdAq8ZSaEzwdHV9lChoBkdAbT8pEQXhwWgHTacBaAhHQKvGdMlC1JF1fZQoaAZHQGyds7dSEUVoB00aA2gIR0Crx4zOX3QEdX2UKGgGR0BxzhcophF3aAdNBwFoCEdAq8fCFyq+8HV9lChoBkdANs0Tg2qDLGgHS81oCEdAq8jSOBDohnV9lChoBkdAbETKnNxEOWgHTUABaAhHQKvJiTNdJJ51fZQoaAZHQHCSEHpr1uloB0v9aAhHQKvJxTvRZ2Z1fZQoaAZHQG4AaxHG0eFoB03iAWgIR0Cryoab4Ju3dX2UKGgGR0Bt7rR8c+7laAdNDQFoCEdAq8qtUXHim3V9lChoBkdAbgVeQ+2VmmgHTT0BaAhHQKvLJ/ffoA51fZQoaAZHQEAlZha1TitoB0veaAhHQKvL0nk1dgR1fZQoaAZHQG10vAoG6f9oB00QAWgIR0CrzFRx95QhdX2UKGgGR0Bx+AvrWy1NaAdNCwFoCEdAq84KGSIP9XV9lChoBkdAZFtrJr+HamgHTegDaAhHQKvPICq6vq11fZQoaAZHQG7q2jGkvbpoB0v4aAhHQKvPktUXHip1fZQoaAZHQGf/PpQk5ZNoB01IAWgIR0Crz5sXSBsidX2UKGgGR0BwtW3G4qgAaAdL9mgIR0Cr0CrRjSXudX2UKGgGR0BwzZ/XoTwlaAdNHgFoCEdAq9A03S8aoHV9lChoBkdAbMWMVk+X7mgHTUABaAhHQKvQVI1cdHV1fZQoaAZHv/Oso2GZeAxoB0veaAhHQKvRGOEug6F1fZQoaAZHQGxF4MOPNmloB007AWgIR0Cr0gCiqQzUdX2UKGgGR0BxeyYBvJiiaAdNWwFoCEdAq9M2BxxT9HV9lChoBkdAb0dXyRSxaGgHTQYBaAhHQKvTgPK+zt11fZQoaAZHQHC9gazeGfxoB01GAmgIR0Cr06S39aUzdX2UKGgGR0Bxn3kNnXd1aAdL5WgIR0Cr1NQl8gIQdX2UKGgGR0Bq8Ub70nPWaAdNoAJoCEdAq9TaTQmeDnV9lChoBkdAbVMxQBPsRmgHS/VoCEdAq9VSdz4k/3V9lChoBkdAbfcpnYg7o2gHS/ZoCEdAq9YiQNkOJHV9lChoBkdAbJTycTakAWgHTQMBaAhHQKvXYr6LwWp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}