ibrahimbukhari1998
commited on
End of training
Browse files
README.md
CHANGED
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [cis-lmu/glot500-base](https://huggingface.co/cis-lmu/glot500-base) on the universal_dependencies dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -80,8 +80,8 @@ The following hyperparameters were used during training:
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.9608762098828324
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.9602891762549639
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.9605826033815442
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9654301806175957
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [cis-lmu/glot500-base](https://huggingface.co/cis-lmu/glot500-base) on the universal_dependencies dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.1267
|
49 |
+
- Precision: 0.9609
|
50 |
+
- Recall: 0.9603
|
51 |
+
- F1: 0.9606
|
52 |
+
- Accuracy: 0.9654
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| 0.9175 | 1.0 | 904 | 0.1582 | 0.9548 | 0.9541 | 0.9544 | 0.9601 |
|
84 |
+
| 0.1162 | 2.0 | 1808 | 0.1267 | 0.9609 | 0.9603 | 0.9606 | 0.9654 |
|
85 |
|
86 |
|
87 |
### Framework versions
|