eduardosoares99 commited on
Commit
2ce84eb
1 Parent(s): 449f87e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -5,7 +5,7 @@ license: apache-2.0
5
 
6
  This repository provides PyTorch source code associated with our publication, "A Large Encoder-Decoder Family of Foundation Models for Chemical Language".
7
 
8
- Paper: [Arxiv Link](paper/smi_ted_preprint.pdf)
9
 
10
  For model weights contact: [email protected] or [email protected] .
11
 
@@ -101,7 +101,7 @@ Use `train_model_D.py` to train only the decoder or `train_model_ED.py` to train
101
 
102
  ## Finetuning
103
 
104
- The finetuning datasets and environment can be found in the [finetune](finetune/) directory. After setting up the environment, you can run a finetuning task with:
105
 
106
  ```
107
  bash finetune/smi_ted_light/esol/run_finetune_esol.sh
@@ -111,7 +111,7 @@ Finetuning training/checkpointing resources will be available in directories nam
111
 
112
  ## Feature Extraction
113
 
114
- The example notebook [smi_ted_encoder_decoder_example.ipynb](notebooks/smi_ted_encoder_decoder_example.ipynb) contains code to load checkpoint files and use the pre-trained model for encoder and decoder tasks. It also includes examples of classification and regression tasks. For model weights contact: [email protected] or [email protected].
115
 
116
  To load smi-ted, you can simply use:
117
 
 
5
 
6
  This repository provides PyTorch source code associated with our publication, "A Large Encoder-Decoder Family of Foundation Models for Chemical Language".
7
 
8
+ Paper: [Arxiv Link](https://github.com/IBM/materials/blob/main/smi-ted/paper/smi_ted_preprint.pdf)
9
 
10
  For model weights contact: [email protected] or [email protected] .
11
 
 
101
 
102
  ## Finetuning
103
 
104
+ The finetuning datasets and environment can be found in the [finetune](https://github.com/IBM/materials/tree/main/smi-ted/finetune) directory. After setting up the environment, you can run a finetuning task with:
105
 
106
  ```
107
  bash finetune/smi_ted_light/esol/run_finetune_esol.sh
 
111
 
112
  ## Feature Extraction
113
 
114
+ The example notebook [smi_ted_encoder_decoder_example.ipynb](https://github.com/IBM/materials/blob/main/smi-ted/notebooks/smi_ted_encoder_decoder_example.ipynb) contains code to load checkpoint files and use the pre-trained model for encoder and decoder tasks. It also includes examples of classification and regression tasks. For model weights contact: [email protected] or [email protected].
115
 
116
  To load smi-ted, you can simply use:
117