thrumbel commited on
Commit
f87f81e
1 Parent(s): 5da4b24

Push model using huggingface_hub.

Browse files
Files changed (1) hide show
  1. README.md +35 -36
README.md CHANGED
@@ -16,15 +16,15 @@ tags:
16
 
17
  - **Developers:** IBM Research
18
  - **GitHub Repository:** [https://github.com/BiomedSciAI/biomed-multi-view](https://github.com/BiomedSciAI/biomed-multi-view)
19
- - **Paper:** [Multi-view biomedical foundation models for molecule-target and property prediction](https://arxiv.org/abs/TBD)
20
- - **Release Date**: Oct 29th, 2024
21
- - **License:** [apache-2.0](https://www.apache.org/licenses/LICENSE-2.0).
22
 
23
  ## Model Description
24
 
25
- This model contains the implementation of the Multi-view Molecular Embedding with Late Fusion (MMELON) architecture. MMELON combines molecular representations from three views image, 2-dimensional chemically-bonded graph, and text (SMILES) to learn a joint embedding that can be finetuned for downstream tasks in chemical and biological property prediction.
26
 
27
- It was introduced in the paper [Multi-view biomedical foundation models for molecule-target and property prediction](https://arxiv.org/) by authors and first released in [this repository](https://github.com/BiomedSciAI/biomed-multi-view).
28
 
29
  ![SmallMoleculeMultiView Overview](https://github.com/BiomedSciAI/biomed-multi-view/blob/main/docs/overview.png?raw=true)
30
 
@@ -34,13 +34,19 @@ It was introduced in the paper [Multi-view biomedical foundation models for mole
34
 
35
  The embeddings from these single-view pre-trained encoders are combined using an attention-based aggregator module. This module learns to weight each view appropriately, producing a unified multi-view embedding. This approach leverages the strengths of each representation to improve performance on downstream predictive tasks.
36
 
 
 
 
 
 
 
37
 
38
  ## Usage
39
 
40
- Using `SmallMoleculeMultiView` requires [https://github.com/BiomedSciAI/biomed-multi-view](https://github.com/BiomedSciAI/biomed-multi-view)
41
 
42
  ## Installation
43
- Follow these steps to set up the `biomed.multi-view` codebase on your system.
44
 
45
  ### Prerequisites
46
  * Operating System: Linux or macOS
@@ -50,27 +56,14 @@ Follow these steps to set up the `biomed.multi-view` codebase on your system.
50
 
51
 
52
  ### Step 1: Set up the project directory
53
- Choose a root directory where you want to install biomed.multi-view. For example:
54
 
55
  ```bash
56
  export ROOT_DIR=~/biomed-multiview
57
  mkdir -p $ROOT_DIR
58
  ```
59
 
60
- ### Step 2: Install anaconda3
61
- If you have Anconda in your system you can skip this step.
62
- ``` bash
63
- cd $ROOT_DIR
64
- # Download the Anaconda installer
65
- wget https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh
66
-
67
- # Run the installer
68
- bash Anaconda3-2023.03-Linux-x86_64.sh
69
- # After installation, initialize Conda:
70
- source activate $ROOT_DIR/anaconda3/bin/activate
71
- ```
72
-
73
- #### Step 3: Create and activate a Conda environment
74
  ```bash
75
  conda create -y python=3.11 --prefix $ROOT_DIR/envs/biomed-multiview
76
  ```
@@ -79,7 +72,7 @@ Activate the environment:
79
  conda activate $ROOT_DIR/envs/biomed-multiview
80
  ```
81
 
82
- #### Step 4: Clone the repository
83
  Navigate to the project directory and clone the repository:
84
  ```bash
85
  mkdir -p $ROOT_DIR/code
@@ -89,14 +82,14 @@ cd $ROOT_DIR/code
89
  git clone https://github.com/BiomedSciAI/biomed-multi-view.git
90
 
91
  # Navigate into the cloned repository
92
- cd biomed.multi-view
93
  ```
94
  Note: If you prefer using SSH, ensure that your SSH keys are set up with GitHub and use the following command:
95
  ```bash
96
  git clone [email protected]:BiomedSciAI/biomed-multi-view.git
97
  ```
98
 
99
- #### Step 5: Install package dependencies
100
  Install the package in editable mode along with development dependencies:
101
  ``` bash
102
  pip install -e .['dev']
@@ -106,7 +99,7 @@ Install additional requirements:
106
  pip install -r requirements.txt
107
  ```
108
 
109
- #### Step 6: macOS-Specific instructions (Apple Silicon)
110
  If you are using a Mac with Apple Silicon (M1/M2/M3) and the zsh shell, you may need to disable globbing for the installation command:
111
 
112
  ``` bash
@@ -117,7 +110,7 @@ Install macOS-specific requirements optimized for Apple’s Metal Performance Sh
117
  pip install -r requirements-mps.txt
118
  ```
119
 
120
- #### Step 7: Installation verification (optional)
121
  Verify that the installation was successful by running unit tests
122
 
123
  ```bash
@@ -127,7 +120,8 @@ python -m unittest bmfm_sm.tests.all_tests
127
 
128
  ### Get embedding example
129
 
130
- A simple example:
 
131
  ```python
132
  # Necessary imports
133
  from bmfm_sm.api.smmv_api import SmallMoleculeMultiViewModel
@@ -152,6 +146,8 @@ print(example_emb.shape)
152
 
153
  ### Get prediction example
154
 
 
 
155
  ``` python
156
  from bmfm_sm.api.smmv_api import SmallMoleculeMultiViewModel
157
  from bmfm_sm.api.dataset_registry import DatasetRegistry
@@ -160,7 +156,7 @@ from bmfm_sm.api.dataset_registry import DatasetRegistry
160
  dataset_registry = DatasetRegistry()
161
 
162
  # Example SMILES string
163
- example_smiles = "CC(C)CC1=CC=C(C=C1)C(C)C(=O)O"
164
 
165
  # Get dataset information for dataset
166
  ds = dataset_registry.get_dataset_info("TOXCAST")
@@ -183,7 +179,7 @@ print("Prediction:", prediction)
183
 
184
  ##### Output:
185
  ```bash
186
- Prediction: {'prediction': [0.85], 'label': None}
187
  ```
188
 
189
  For more advanced usage, see our detailed examples at: https://github.com/BiomedSciAI/biomed-multi-view
@@ -191,12 +187,15 @@ For more advanced usage, see our detailed examples at: https://github.com/Biomed
191
 
192
  ## Citation
193
 
194
- If you found our work useful, please consider to give a star to the repo and cite our paper:
195
  ```
196
- @article{TBD,
197
- title={TBD},
198
- author={IBM Research Team},
199
- jounal={arXiv preprint arXiv:TBD},
200
- year={2024}
 
 
 
201
  }
202
  ```
 
16
 
17
  - **Developers:** IBM Research
18
  - **GitHub Repository:** [https://github.com/BiomedSciAI/biomed-multi-view](https://github.com/BiomedSciAI/biomed-multi-view)
19
+ - **Paper:** [Multi-view biomedical foundation models for molecule-target and property prediction](https://arxiv.org/abs/2410.19704)
20
+ - **Release Date**: Oct 28th, 2024
21
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
22
 
23
  ## Model Description
24
 
25
+ `biomed.sm.mv-te-84m` is a biomedical foundation model for small molecules created using MMELON (Multi-view Molecular Embedding with Late Fusion), a flexible approach to aggregate multiple views (sequence, image, graph) of molecules in a foundation model setting. While models based on single view representation typically performs well on some downstream tasks and not others, the multi-view model performs robustly across a wide range of property prediction tasks encompassing ligand-protein binding, molecular solubility, metabolism and toxicity. It has been applied to screen compounds against a large (> 100 targets) set of G Protein-Coupled receptors (GPCRs) to identify strong binders for 33 targets related to Alzheimer’s disease, which are validated through structure-based modeling and identification of key binding motifs [Multi-view biomedical foundation models for molecule-target and property prediction](https://arxiv.org/abs/2410.19704).
26
 
27
+ Source code is made available in [this repository](https://github.com/BiomedSciAI/biomed-multi-view).
28
 
29
  ![SmallMoleculeMultiView Overview](https://github.com/BiomedSciAI/biomed-multi-view/blob/main/docs/overview.png?raw=true)
30
 
 
34
 
35
  The embeddings from these single-view pre-trained encoders are combined using an attention-based aggregator module. This module learns to weight each view appropriately, producing a unified multi-view embedding. This approach leverages the strengths of each representation to improve performance on downstream predictive tasks.
36
 
37
+ ## Intended Use and Limitations
38
+
39
+ The model is intended for (1) Molecular property prediction. The pre-trained model may be fine-tuned for both regression and classification tasks. Examples include but are not limited to binding affinity, solubility and toxicity. (2) Pre-trained model embeddings may be used as the basis for similarity measures to search a chemical library. (3) Small molecule embeddings provided by the model may be combined with protein embeddings to fine-tune on tasks that utilize both small molecule and protein representation. (4) Select task-specific fine-tuned models are given as examples. Through listed activities, model may aid in aspects of the molecular discovery such as lead finding or optimization.
40
+
41
+
42
+ The model’s domain of applicability is small, drug-like molecules. It intended for use with molecules less than 1000 Da molecular weight. The MMELON approach itself may be extended to include proteins and other macromolecules but does not at present provide embeddings for such entities. The model is at present not intended for molecular generation. Molecules must be given as a valid SMILES string that represents a valid chemically bonded graph. Invalid inputs will impact performance or lead to error.
43
 
44
  ## Usage
45
 
46
+ Using `SmallMoleculeMultiView` API requires the codebase [https://github.com/BiomedSciAI/biomed-multi-view](https://github.com/BiomedSciAI/biomed-multi-view)
47
 
48
  ## Installation
49
+ Follow these steps to set up the `biomed-multi-view` codebase on your system.
50
 
51
  ### Prerequisites
52
  * Operating System: Linux or macOS
 
56
 
57
 
58
  ### Step 1: Set up the project directory
59
+ Choose a root directory where you want to install `biomed-multi-view`. For example:
60
 
61
  ```bash
62
  export ROOT_DIR=~/biomed-multiview
63
  mkdir -p $ROOT_DIR
64
  ```
65
 
66
+ #### Step 2: Create and activate a Conda environment
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  ```bash
68
  conda create -y python=3.11 --prefix $ROOT_DIR/envs/biomed-multiview
69
  ```
 
72
  conda activate $ROOT_DIR/envs/biomed-multiview
73
  ```
74
 
75
+ #### Step 3: Clone the repository
76
  Navigate to the project directory and clone the repository:
77
  ```bash
78
  mkdir -p $ROOT_DIR/code
 
82
  git clone https://github.com/BiomedSciAI/biomed-multi-view.git
83
 
84
  # Navigate into the cloned repository
85
+ cd biomed-multi-view
86
  ```
87
  Note: If you prefer using SSH, ensure that your SSH keys are set up with GitHub and use the following command:
88
  ```bash
89
  git clone [email protected]:BiomedSciAI/biomed-multi-view.git
90
  ```
91
 
92
+ #### Step 4: Install package dependencies
93
  Install the package in editable mode along with development dependencies:
94
  ``` bash
95
  pip install -e .['dev']
 
99
  pip install -r requirements.txt
100
  ```
101
 
102
+ #### Step 5: macOS-Specific instructions (Apple Silicon)
103
  If you are using a Mac with Apple Silicon (M1/M2/M3) and the zsh shell, you may need to disable globbing for the installation command:
104
 
105
  ``` bash
 
110
  pip install -r requirements-mps.txt
111
  ```
112
 
113
+ #### Step 6: Installation verification (optional)
114
  Verify that the installation was successful by running unit tests
115
 
116
  ```bash
 
120
 
121
  ### Get embedding example
122
 
123
+ You can generate embeddings for a given molecule using the pretrained model with the following code.
124
+
125
  ```python
126
  # Necessary imports
127
  from bmfm_sm.api.smmv_api import SmallMoleculeMultiViewModel
 
146
 
147
  ### Get prediction example
148
 
149
+ You can use the finetuned models to make predictions on new data.
150
+
151
  ``` python
152
  from bmfm_sm.api.smmv_api import SmallMoleculeMultiViewModel
153
  from bmfm_sm.api.dataset_registry import DatasetRegistry
 
156
  dataset_registry = DatasetRegistry()
157
 
158
  # Example SMILES string
159
+ example_smiles = "CC(C)C1CCC(C)CC1O"
160
 
161
  # Get dataset information for dataset
162
  ds = dataset_registry.get_dataset_info("TOXCAST")
 
179
 
180
  ##### Output:
181
  ```bash
182
+ Prediction: {'prediction': [-2.53]}
183
  ```
184
 
185
  For more advanced usage, see our detailed examples at: https://github.com/BiomedSciAI/biomed-multi-view
 
187
 
188
  ## Citation
189
 
190
+ If you found our work useful, please consider giving a star to the repo and cite our paper:
191
  ```
192
+ @misc{suryanarayanan2024multiviewbiomedicalfoundationmodels,
193
+ title={Multi-view biomedical foundation models for molecule-target and property prediction},
194
+ author={Parthasarathy Suryanarayanan and Yunguang Qiu and Shreyans Sethi and Diwakar Mahajan and Hongyang Li and Yuxin Yang and Elif Eyigoz and Aldo Guzman Saenz and Daniel E. Platt and Timothy H. Rumbell and Kenney Ng and Sanjoy Dey and Myson Burch and Bum Chul Kwon and Pablo Meyer and Feixiong Cheng and Jianying Hu and Joseph A. Morrone},
195
+ year={2024},
196
+ eprint={2410.19704},
197
+ archivePrefix={arXiv},
198
+ primaryClass={q-bio.BM},
199
+ url={https://arxiv.org/abs/2410.19704},
200
  }
201
  ```