SagiPolaczek moshe-raboh commited on
Commit
db9569c
1 Parent(s): 3a578f2

add to README model description (#1)

Browse files

- add to README model description (4f11fe3e11e1092d47f8c22bdbc7e9a269d61f3d)


Co-authored-by: Moshe Raboh <[email protected]>

Files changed (1) hide show
  1. README.md +17 -7
README.md CHANGED
@@ -1,32 +1,42 @@
1
  ---
2
  tags:
3
  - biology
 
 
4
  - ibm
5
  - mammal
6
  - pytorch
7
  - transformers
8
- library_name: mammal
9
  license: apache-2.0
10
  ---
11
 
 
 
 
 
 
 
 
 
12
  ## Model Summary
13
 
14
  - **Developers:** IBM Research
15
- - **GitHub Repository:** [TBD](TBD)
16
- - **Paper:** [TBD](https://arxiv.org/abs/TBD)
17
- - **Release Date**: Oct ?th, 2024
18
  - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
19
 
20
 
21
  ## Usage
22
 
23
- Using `MAMMAL` requires [TBD](https://github.com/TBD)
24
 
25
  ```
26
- pip install TBD
27
  ```
28
 
29
- A simple example:
30
  ```python
31
  import torch
32
  from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
 
1
  ---
2
  tags:
3
  - biology
4
+ - small-moelcule
5
+ - single-cell-genes
6
  - ibm
7
  - mammal
8
  - pytorch
9
  - transformers
10
+ library_name: biomed
11
  license: apache-2.0
12
  ---
13
 
14
+ The **ibm/biomed.omics.bl.sm.ma-ted-400m** model is a biomedical foundation model trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
15
+ Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.
16
+
17
+ Based on the **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage (**MAMMAL**), this model introduces a flexible, multi-domain architecture with an adaptable task prompt syntax.
18
+ The syntax allows for dynamic combinations of tokens and scalars, enabling classification, regression, and generation tasks either within a single domain or with cross-domain entities.
19
+
20
+ **TBD: add main paper figure when ready**
21
+
22
  ## Model Summary
23
 
24
  - **Developers:** IBM Research
25
+ - **GitHub Repository:** https://github.com/BiomedSciAI/biomed-multi-alignment
26
+ - **Paper:** TBD
27
+ - **Release Date**: Oct 28th, 2024
28
  - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
29
 
30
 
31
  ## Usage
32
 
33
+ Using `ibm/biomed.omics.bl.sm.ma-ted-400m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
34
 
35
  ```
36
+ pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
37
  ```
38
 
39
+ A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-400m`:
40
  ```python
41
  import torch
42
  from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp