moshe-raboh
commited on
Commit
•
a4fc3ad
1
Parent(s):
ff2db0b
Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,92 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
tags:
|
3 |
+
- protein
|
4 |
+
- ibm
|
5 |
+
- mammal
|
6 |
+
- pytorch
|
7 |
+
- transformers
|
8 |
+
library_name: biomed
|
9 |
+
license: apache-2.0
|
10 |
---
|
11 |
|
12 |
+
Protein solubility is a critical factor in both pharmaceutical research and production processes, as it can significantly impact the quality and function of a protein.
|
13 |
+
This is an example for finetuning `ibm/biomed.omics.bl.sm-ted-400m` for protein solubility prediction (binary classification) based solely on the amino acid sequence.
|
14 |
+
|
15 |
+
The benchmark defined in: https://academic.oup.com/bioinformatics/article/34/15/2605/4938490
|
16 |
+
Data retrieved from: https://zenodo.org/records/1162886
|
17 |
+
|
18 |
+
|
19 |
+
## Model Summary
|
20 |
+
|
21 |
+
- **Developers:** IBM Research
|
22 |
+
- **GitHub Repository:** https://github.com/BiomedSciAI/biomed-multi-alignment
|
23 |
+
- **Paper:** TBD
|
24 |
+
- **Release Date**: Oct 28th, 2024
|
25 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|
26 |
+
|
27 |
+
## Usage
|
28 |
+
|
29 |
+
Using `ibm/biomed.omics.bl.sm.ma-ted-400m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
|
30 |
+
|
31 |
+
```
|
32 |
+
pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
|
33 |
+
```
|
34 |
+
|
35 |
+
A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-400m`:
|
36 |
+
```python
|
37 |
+
import os
|
38 |
+
|
39 |
+
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
40 |
+
|
41 |
+
from mammal.examples.protein_solubility.task import ProteinSolubilityTask
|
42 |
+
from mammal.keys import CLS_PRED, SCORES
|
43 |
+
from mammal.model import Mammal
|
44 |
+
|
45 |
+
# Load Model
|
46 |
+
model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.protein_solubility")
|
47 |
+
|
48 |
+
# Load Tokenizer
|
49 |
+
tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.protein_solubility")
|
50 |
+
|
51 |
+
# convert to MAMMAL style
|
52 |
+
sample_dict = {"protein_seq": protein_seq}
|
53 |
+
sample_dict = ProteinSolubilityTask.data_preprocessing(
|
54 |
+
sample_dict=sample_dict,
|
55 |
+
protein_sequence_key="protein_seq",
|
56 |
+
tokenizer_op=tokenizer_op,
|
57 |
+
device=nn_model.device,
|
58 |
+
)
|
59 |
+
|
60 |
+
# running in generate mode
|
61 |
+
batch_dict = nn_model.generate(
|
62 |
+
[sample_dict],
|
63 |
+
output_scores=True,
|
64 |
+
return_dict_in_generate=True,
|
65 |
+
max_new_tokens=5,
|
66 |
+
)
|
67 |
+
|
68 |
+
# Post-process the model's output
|
69 |
+
ans = ProteinSolubilityTask.process_model_output(
|
70 |
+
tokenizer_op=tokenizer_op,
|
71 |
+
decoder_output=batch_dict[CLS_PRED][0],
|
72 |
+
decoder_output_scores=batch_dict[SCORES][0],
|
73 |
+
)
|
74 |
+
|
75 |
+
# Print prediction
|
76 |
+
print(f"{ans=}")
|
77 |
+
```
|
78 |
+
|
79 |
+
For more advanced usage, see our detailed example at: on `https://github.com/BiomedSciAI/biomed-multi-alignment`
|
80 |
+
|
81 |
+
|
82 |
+
## Citation
|
83 |
+
|
84 |
+
If you found our work useful, please consider to give a star to the repo and cite our paper:
|
85 |
+
```
|
86 |
+
@article{TBD,
|
87 |
+
title={TBD},
|
88 |
+
author={IBM Research Team},
|
89 |
+
jounal={arXiv preprint arXiv:TBD},
|
90 |
+
year={2024}
|
91 |
+
}
|
92 |
+
```
|