moshe-raboh
commited on
Commit
•
fc4233c
1
Parent(s):
4c8d3fa
Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,95 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
tags:
|
3 |
+
- protein
|
4 |
+
- small-molecule
|
5 |
+
- dti
|
6 |
+
- ibm
|
7 |
+
- mammal
|
8 |
+
- pytorch
|
9 |
+
- transformers
|
10 |
+
library_name: biomed
|
11 |
+
license: apache-2.0
|
12 |
+
base_model:
|
13 |
+
- ibm/biomed.omics.bl.sm.ma-ted-400m
|
14 |
---
|
15 |
|
16 |
+
Accurate prediction of drug-target binding affinity is essential in the early stages of drug discovery.
|
17 |
+
This is an example of finetuning ibm/biomed.omics.bl.sm-ted-400 the task.
|
18 |
+
Prediction of binding affinities using pKd, the negative logarithm of the dissociation constant, which reflects the strength of the interaction between a small molecule (drug) and a protein (target).
|
19 |
+
The expected inputs for the model are the amino acid sequence of the target and the SMILES representation of the drug.
|
20 |
+
|
21 |
+
The benchmark used for fine-tuning defined on: `https://tdcommons.ai/multi_pred_tasks/dti/`
|
22 |
+
We also harmonize the values using data.harmonize_affinities(mode = 'max_affinity') and transforming to log-scale.
|
23 |
+
By default, we are using Drug+Target cold-split, as provided by tdcommons.
|
24 |
+
|
25 |
+
|
26 |
+
## Model Summary
|
27 |
+
|
28 |
+
- **Developers:** IBM Research
|
29 |
+
- **GitHub Repository:** https://github.com/BiomedSciAI/biomed-multi-alignment
|
30 |
+
- **Paper:** TBD
|
31 |
+
- **Release Date**: Oct 28th, 2024
|
32 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
Using `ibm/biomed.omics.bl.sm.ma-ted-400m` requires installing [https://github.com/BiomedSciAI/biomed-multi-alignment](https://github.com/TBD)
|
37 |
+
|
38 |
+
```
|
39 |
+
pip install git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
|
40 |
+
```
|
41 |
+
|
42 |
+
A simple example for a task already supported by `ibm/biomed.omics.bl.sm.ma-ted-400m`:
|
43 |
+
```python
|
44 |
+
|
45 |
+
|
46 |
+
# Load Model
|
47 |
+
model = Mammal.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
|
48 |
+
|
49 |
+
# Load Tokenizer
|
50 |
+
tokenizer_op = ModularTokenizerOp.from_pretrained("ibm/biomed.omics.bl.sm.ma-ted-400m.dti_bindingdb_pkd")
|
51 |
+
|
52 |
+
# convert to MAMMAL style
|
53 |
+
sample_dict = {"target_seq": target_seq, "drug_seq": drug_seq}
|
54 |
+
sample_dict = DtiBindingdbKdTask.data_preprocessing(
|
55 |
+
sample_dict=sample_dict,
|
56 |
+
tokenizer_op=tokenizer_op,
|
57 |
+
target_sequence_key="target_seq",
|
58 |
+
drug_sequence_key="drug_seq",
|
59 |
+
norm_y_mean=None,
|
60 |
+
norm_y_std=None,
|
61 |
+
device=nn_model.device,
|
62 |
+
)
|
63 |
+
|
64 |
+
# forward pass - encoder_only mode which supports scalars predictions
|
65 |
+
batch_dict = nn_model.forward_encoder_only([sample_dict])
|
66 |
+
|
67 |
+
# Post-process the model's output
|
68 |
+
batch_dict = DtiBindingdbKdTask.process_model_output(
|
69 |
+
batch_dict,
|
70 |
+
scalars_preds_processed_key="model.out.dti_bindingdb_kd",
|
71 |
+
norm_y_mean=norm_y_mean,
|
72 |
+
norm_y_std=norm_y_std,
|
73 |
+
)
|
74 |
+
ans = {
|
75 |
+
"model.out.dti_bindingdb_kd": float(batch_dict["model.out.dti_bindingdb_kd"][0])
|
76 |
+
}
|
77 |
+
|
78 |
+
# Print prediction
|
79 |
+
print(f"{ans=}")
|
80 |
+
```
|
81 |
+
|
82 |
+
For more advanced usage, see our detailed example at: on `https://github.com/BiomedSciAI/biomed-multi-alignment`
|
83 |
+
|
84 |
+
|
85 |
+
## Citation
|
86 |
+
|
87 |
+
If you found our work useful, please consider to give a star to the repo and cite our paper:
|
88 |
+
```
|
89 |
+
@article{TBD,
|
90 |
+
title={TBD},
|
91 |
+
author={IBM Research Team},
|
92 |
+
jounal={arXiv preprint arXiv:TBD},
|
93 |
+
year={2024}
|
94 |
+
}
|
95 |
+
```
|