ibm
/

File size: 3,756 Bytes
c7d6e2f
 
 
0abe88e
c7d6e2f
 
 
 
 
 
 
0abe88e
 
c7d6e2f
 
 
 
 
 
 
 
0abe88e
 
c7d6e2f
e7ee55e
 
 
c7d6e2f
 
 
 
0abe88e
 
c7d6e2f
e7ee55e
 
 
c7d6e2f
 
 
 
0abe88e
 
c7d6e2f
e7ee55e
 
 
 
 
 
 
0abe88e
 
e7ee55e
 
 
 
 
 
 
 
0abe88e
 
e7ee55e
 
 
 
c7d6e2f
 
 
 
0abe88e
 
c7d6e2f
e7ee55e
 
 
c7d6e2f
 
 
 
0abe88e
 
c7d6e2f
e7ee55e
 
 
c7d6e2f
 
 
 
0abe88e
 
c7d6e2f
e7ee55e
 
 
c7d6e2f
 
 
 
0abe88e
 
c7d6e2f
e7ee55e
 
 
c7d6e2f
 
 
 
0abe88e
 
c7d6e2f
e7ee55e
 
 
c7d6e2f
 
 
 
34aa0bb
5095e68
c7d6e2f
 
5095e68
c7d6e2f
 
 
 
 
 
 
 
e32422a
c7d6e2f
 
 
 
 
3a0e6e0
c7d6e2f
3a0e6e0
c7d6e2f
 
 
 
 
 
 
 
 
 
0abe88e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
pipeline_tag: text-generation
inference: false
license: cc-by-nc-4.0
library_name: transformers
model-index:
- name: ibm/PowerLM-3b
  results:
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: ARC
    metrics:
    - name: accuracy-norm
      type: accuracy-norm
      value: 57.2
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: BoolQ
    metrics:
    - name: accuracy
      type: accuracy
      value: 75
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: Hellaswag
    metrics:
    - name: accuracy-norm
      type: accuracy-norm
      value: 74.2
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: OpenBookQA
    metrics:
    - name: accuracy-norm
      type: accuracy-norm
      value: 41.2
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: PIQA
    metrics:
    - name: accuracy-norm
      type: accuracy-norm
      value: 79.9
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: Winogrande
    metrics:
    - name: accuracy-norm
      type: accuracy-norm
      value: 66.3
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: MMLU
    metrics:
    - name: accuracy
      type: accuracy
      value: 44.3
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: GSM8k (5 shot)
    metrics:
    - name: accuracy
      type: accuracy
      value: 35.9
      verified: false
  - task:
      type: text-generation
    dataset:
      type: lm-eval-harness
      name: math (4 shot)
    metrics:
    - name: accuracy
      type: accuracy
      value: 14
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode-eval
      name: humaneval
    metrics:
    - name: pass@1
      type: pass@1
      value: 21.9
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode-eval
      name: MBPP
    metrics:
    - name: pass@1
      type: pass@1
      value: 28
      verified: false
---

## Model Summary
PowerLM-3B is a 3B state-of-the-art small language model trained with the Power learning rate scheduler. It is trained on a mix of open-source and proprietary datasets. PowerLM-3B has shown promising results compared to other models in the size categories across various benchmarks, including natural language multi-choices, code generation, and math reasoning.
Paper: https://arxiv.org/abs/2408.13359

## Usage
Note: Requires installing HF transformers from source.

### Generation
This is a simple example of how to use **PowerLM-3b** model.

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
model_path = "ibm/PowerLM-3b"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."
# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# transfer tokenized inputs to the device
for i in input_tokens:
    input_tokens[i] = input_tokens[i].to(device)
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
    print(i)
```