romeokienzler's picture
Update config.yaml
734422a verified
raw
history blame
2.99 kB
data:
type: merra2
# Input variables definition
input_surface_vars:
- EFLUX
- GWETROOT
- HFLUX
- LAI
- LWGAB # surface absorbed longwave radiation
- LWGEM # longwave flux emitted from surface
- LWTUP # upwelling longwave flux at toa
- PS # surface pressure
- QV2M # 2-meter specific humidity
- SLP # sea level pressure
- SWGNT # surface net downward shortwave flux
- SWTNT # toa net downward shortwave flux
- T2M # near surface temperature
- TQI # total precipitable ice water
- TQL # total precipitable liquid water
- TQV # total precipitable water vapor
- TS # surface skin temperature
- U10M # 10m eastward wind
- V10M # 10m northward wind
- Z0M # surface roughness
input_static_surface_vars: [FRACI, FRLAND, FROCEAN, PHIS]
input_vertical_vars:
- CLOUD # cloud feraction for radiation
- H # geopotential/ mid layer heights
- OMEGA # vertical pressure velocity
- PL # mid level pressure
- QI # mass fraction of clous ice water
- QL # mass fraction of cloud liquid water
- QV # specific humidity
- T # tempertaure
- U # eastward wind
- V # northward wind
# (model level/ml ~ pressure level/hPa)
# 52ml ~ 562.5hPa, 56ml ~ 700hPa, 63 ml ~ 850hPa
input_levels: [34.0, 39.0, 41.0, 43.0, 44.0, 45.0, 48.0, 53.0, 56.0, 63.0, 68.0, 72.0]
## remove: n_input_timestamps: 1
# Output variables definition
output_vars:
- T2M # near surface temperature
n_input_timestamps: 2
# Data transformations
# Initial crop before any other processing
crop_lat: [0, 1]
# crop_lon: [0, 0]
# coarsening of target -- applied after crop
input_size_lat: 60 # 6x coarsening
input_size_lon: 96 # 6x coarsening
apply_smoothen: True
model:
# Platform independent config
num_static_channels: 7
embed_dim: 2560
token_size:
- 1
- 1
n_blocks_encoder: 12
mlp_multiplier: 4
n_heads: 16
dropout_rate: 0.0
drop_path: 0.05
# Accepted values: temporal, climate, none
residual: climate
residual_connection: True
encoder_shift: False
downscaling_patch_size: [2, 2]
downscaling_embed_dim: 256
encoder_decoder_type: 'conv' # ['conv', 'transformer']
encoder_decoder_upsampling_mode: pixel_shuffle # ['nearest', 'bilinear', 'pixel_shuffle', 'conv_transpose']
encoder_decoder_kernel_size_per_stage: [[3], [3]] # Optional, default = 3 for conv_tanspose [[3], [2]]
encoder_decoder_scale_per_stage: [[2], [3]] # First list determines before/after backbone
encoder_decoder_conv_channels: 128
job_id: inference-test
batch_size: 1
num_epochs: 400
dl_num_workers: 2
dl_prefetch_size: 1
learning_rate: 0.0001
limit_steps_train: 250
limit_steps_valid: 25
min_lr: 0.00001
max_lr: 0.0002
warm_up_steps: 0
mask_unit_size:
- 15
- 16
mask_ratio_inputs: 0.0
mask_ratio_targets: 0.0
max_batch_size: 16
path_experiment: experiment
backbone_freeze: True
backbone_prefix: encoder.
finetune_w_static: True
strict_matching: true