mayank-mishra
commited on
Commit
•
9b4d69b
1
Parent(s):
4660a63
Update README.md
Browse files
README.md
CHANGED
@@ -226,7 +226,7 @@ This is a simple example of how to use **Granite-34B-Code-Instruct** model.
|
|
226 |
import torch
|
227 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
228 |
device = "cuda" # or "cpu"
|
229 |
-
model_path = "granite-
|
230 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
231 |
# drop device_map if running on CPU
|
232 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
@@ -250,6 +250,7 @@ for i in output:
|
|
250 |
print(i)
|
251 |
```
|
252 |
|
|
|
253 |
<!-- TO DO: Check this part -->
|
254 |
## Training Data
|
255 |
Granite Code Instruct models are trained on the following types of data.
|
|
|
226 |
import torch
|
227 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
228 |
device = "cuda" # or "cpu"
|
229 |
+
model_path = "ibm-granite/granite-34b-code-instruct"
|
230 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
231 |
# drop device_map if running on CPU
|
232 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
|
|
250 |
print(i)
|
251 |
```
|
252 |
|
253 |
+
|
254 |
<!-- TO DO: Check this part -->
|
255 |
## Training Data
|
256 |
Granite Code Instruct models are trained on the following types of data.
|