adding model card
Browse files
README.md
CHANGED
@@ -1,3 +1,349 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: text-generation
|
3 |
+
inference: false
|
4 |
+
license: apache-2.0
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- language
|
8 |
+
- granite-3.2
|
9 |
+
base_model:
|
10 |
+
- ibm-granite/granite-3.1-2b-instruct
|
11 |
+
---
|
12 |
+
|
13 |
+
# Granite-3.2-2B-Instruct
|
14 |
+
|
15 |
+
**Model Summary:**
|
16 |
+
Granite-3.2-2B-Instruct is an 2-billion-parameter, long-context AI model fine-tuned for advanced reasoning capabilities. Built on top of [Granite-3.1-2B-Instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct), it has been trained using a mix of permissively licensed open-source datasets and internally generated synthetic data designed for reasoning tasks. The model allows controllability of its thinking capability, ensuring it is applied only when required.
|
17 |
+
|
18 |
+
|
19 |
+
- **Developers:** Granite Team, IBM
|
20 |
+
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
|
21 |
+
- **Release Date**: February 21th, 2025
|
22 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
23 |
+
|
24 |
+
**Supported Languages:**
|
25 |
+
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. However, users may finetune this Granite model for languages beyond these 12 languages.
|
26 |
+
|
27 |
+
**Intended Use:**
|
28 |
+
This model is designed to handle general instruction-following tasks and can be integrated into AI assistants across various domains, including business applications.
|
29 |
+
|
30 |
+
**Capabilities**
|
31 |
+
* **Thinking**
|
32 |
+
* Summarization
|
33 |
+
* Text classification
|
34 |
+
* Text extraction
|
35 |
+
* Question-answering
|
36 |
+
* Retrieval Augmented Generation (RAG)
|
37 |
+
* Code related tasks
|
38 |
+
* Function-calling tasks
|
39 |
+
* Multilingual dialog use cases
|
40 |
+
* Long-context tasks including long document/meeting summarization, long document QA, etc.
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
**Generation:**
|
45 |
+
This is a simple example of how to use Granite-3.2-2B-Instruct model.
|
46 |
+
|
47 |
+
Install the following libraries:
|
48 |
+
|
49 |
+
```shell
|
50 |
+
pip install torch torchvision torchaudio
|
51 |
+
pip install accelerate
|
52 |
+
pip install transformers
|
53 |
+
```
|
54 |
+
Then, copy the snippet from the section that is relevant for your use case.
|
55 |
+
|
56 |
+
```python
|
57 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
58 |
+
import torch
|
59 |
+
|
60 |
+
model_path="ibm-granite/granite-3.2-2b-instruct"
|
61 |
+
device="cuda"
|
62 |
+
model = AutoModelForCausalLM.from_pretrained(
|
63 |
+
model_path,
|
64 |
+
device_map=device,
|
65 |
+
torch_dtype=torch.bfloat16,
|
66 |
+
)
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
68 |
+
model_path
|
69 |
+
)
|
70 |
+
|
71 |
+
conv = [{"role": "user", "content":"You have 10 liters of a 30% acid solution. How many liters of a 70% acid solution must be added to achieve a 50% acid mixture?"}]
|
72 |
+
|
73 |
+
input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device)
|
74 |
+
|
75 |
+
set_seed(42)
|
76 |
+
output = model.generate(
|
77 |
+
**input_ids,
|
78 |
+
max_new_tokens=8192,
|
79 |
+
)
|
80 |
+
|
81 |
+
prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True)
|
82 |
+
print(prediction)
|
83 |
+
```
|
84 |
+
|
85 |
+
**Example Outputs**
|
86 |
+
- thinking=True
|
87 |
+
```md
|
88 |
+
Here is my thought process:
|
89 |
+
|
90 |
+
1. First, let's understand the composition of the initial 10 liters of 30% acid solution:
|
91 |
+
- Acid content = 30% of 10 liters = 0.30 * 10 = 3 liters
|
92 |
+
|
93 |
+
2. We want to end up with a 50% acid solution. Let's denote the volume of the 70% acid solution to be added as 'x' liters.
|
94 |
+
|
95 |
+
3. The amount of acid in the final mixture (50% solution) should equal the initial acid content plus the acid from the added 70% solution.
|
96 |
+
- Total acid in final mixture = 0.50 * (10 + x)
|
97 |
+
|
98 |
+
4. The equation representing the total acid content is:
|
99 |
+
3 (from initial solution) + 0.70 * x (from added solution) = 0.50 * (10 + x)
|
100 |
+
|
101 |
+
5. Now, we solve for 'x':
|
102 |
+
3 + 0.70x = 5 + 0.50x
|
103 |
+
0.70x - 0.50x = 5 - 3
|
104 |
+
0.20x = 2
|
105 |
+
x = 2 / 0.20
|
106 |
+
x = 10 liters
|
107 |
+
|
108 |
+
6. Therefore, 10 liters of a 70% acid solution must be added to the initial 10 liters of 30% acid solution to achieve a 50% acid mixture.
|
109 |
+
|
110 |
+
Here is my response:
|
111 |
+
|
112 |
+
To solve this problem, we need to determine how much of a 70% acid solution must be added to a 10-liter solution that is already 30% acid to create a new mixture that is 50% acid. Here's how to calculate it:
|
113 |
+
|
114 |
+
1. **Initial Acid Content**:
|
115 |
+
- The initial 10-liter solution contains 3 liters of acid (since 30% of 10 liters).
|
116 |
+
|
117 |
+
2. **Desired Final Acid Content**:
|
118 |
+
- We want the final mixture to be 50% acid.
|
119 |
+
|
120 |
+
3. **Equation Setup**:
|
121 |
+
- Let 'x' be the volume (in liters) of the 70% acid solution to be added.
|
122 |
+
- The equation representing the total acid content in the final mixture (which is 10 liters from the initial solution plus 'x' liters of the added solution) should equal 50% of the total volume (10 + x).
|
123 |
+
- This gives us: 3 (acid from initial solution) + 0.70x (acid from added solution) = 0.50(10 + x)
|
124 |
+
|
125 |
+
4. **Solving the Equation**:
|
126 |
+
- First, simplify the right side of the equation: 0.50(10 + x) = 5 + 0.50x
|
127 |
+
- Now, the equation is: 3 + 0.70x = 5 + 0.50x
|
128 |
+
- Subtract 0.50x from both sides: 0.20x = 2
|
129 |
+
- Divide both sides by 0.20: x = 2 / 0.20
|
130 |
+
- x = 10 liters
|
131 |
+
|
132 |
+
5. **Conclusion**:
|
133 |
+
- To achieve a 50% acid mixture from the initial 30% solution, you need to add 10 liters of a 70% acid solution.
|
134 |
+
|
135 |
+
So, the final answer is that 10 liters of a 70% acid solution must be added to the initial 10 liters of 30% acid solution.
|
136 |
+
```
|
137 |
+
- thinking=False
|
138 |
+
```md
|
139 |
+
To solve this problem, we'll use the concept of volume and concentration. Let's denote the amount of 70% acid solution we need to add as "x" liters.
|
140 |
+
|
141 |
+
First, let's find out how much acid is in the initial 10-liter solution:
|
142 |
+
|
143 |
+
Acid in initial solution = 30% of 10 liters = 0.30 * 10 = 3 liters
|
144 |
+
|
145 |
+
Now, we want to end up with a 50% acid solution in a total volume of (10 + x) liters. Let's denote the final volume as V.
|
146 |
+
|
147 |
+
Final acid concentration = 50%
|
148 |
+
Final acid amount = 50% of V = 0.50 * V
|
149 |
+
|
150 |
+
We know the initial acid amount and the final acid amount, so we can set up an equation:
|
151 |
+
|
152 |
+
Initial acid amount + Acid from added solution = Final acid amount
|
153 |
+
3 liters + (70% of x) = 0.50 * (10 + x)
|
154 |
+
|
155 |
+
Now, let's solve for x:
|
156 |
+
|
157 |
+
0.70x + 3 = 0.50 * 10 + 0.50x
|
158 |
+
0.70x - 0.50x = 0.50 * 10 - 3
|
159 |
+
0.20x = 5 - 3
|
160 |
+
0.20x = 2
|
161 |
+
x = 2 / 0.20
|
162 |
+
x = 10 liters
|
163 |
+
|
164 |
+
So, you need to add 10 liters of a 70% acid solution to the initial 10-liter 30% acid solution to achieve a 50% acid mixture.
|
165 |
+
```
|
166 |
+
|
167 |
+
**Evaluation Results:**
|
168 |
+
<table>
|
169 |
+
|
170 |
+
<thead>
|
171 |
+
<tr>
|
172 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
173 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">ArenaHard</th>
|
174 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Alpaca-Eval-2</th>
|
175 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
|
176 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">PopQA</th>
|
177 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
|
178 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">BigBenchHard</th>
|
179 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">DROP</th>
|
180 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
|
181 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">HumanEval</th>
|
182 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">HumanEval+</th>
|
183 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
|
184 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">AttaQ</th>
|
185 |
+
</tr></thead>
|
186 |
+
<tbody>
|
187 |
+
<tr>
|
188 |
+
<td style="text-align:left; background-color: #DAE8FF; color: black;">Llama-3.1-8B-Instruct</td>
|
189 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">36.43</td>
|
190 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">27.22</td>
|
191 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">69.15</td>
|
192 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">28.79</td>
|
193 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">52.79</td>
|
194 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">72.66</td>
|
195 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">61.48</td>
|
196 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">83.24</td>
|
197 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">85.32</td>
|
198 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">80.15</td>
|
199 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">79.10</td>
|
200 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">83.43</td>
|
201 |
+
</tr>
|
202 |
+
|
203 |
+
<tr>
|
204 |
+
<td style="text-align:left; background-color: #DAE8FF; color: black;">DeepSeek-R1-Distill-Llama-8B</td>
|
205 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">17.17</td>
|
206 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">21.85</td>
|
207 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">45.80</td>
|
208 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">13.25</td>
|
209 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">47.43</td>
|
210 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">65.71</td>
|
211 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">44.46</td>
|
212 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">72.18</td>
|
213 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">67.54</td>
|
214 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">62.91</td>
|
215 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">66.50</td>
|
216 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">42.87</td>
|
217 |
+
</tr>
|
218 |
+
|
219 |
+
<tr>
|
220 |
+
<td style="text-align:left; background-color: #DAE8FF; color: black;">Qwen-2.5-7B-Instruct</td>
|
221 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">25.44</td>
|
222 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">30.34</td>
|
223 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">74.30</td>
|
224 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">18.12</td>
|
225 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">63.06</td>
|
226 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">70.40</td>
|
227 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">54.71</td>
|
228 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">84.46</td>
|
229 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">93.35</td>
|
230 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">89.91</td>
|
231 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">74.90</td>
|
232 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">81.90</td>
|
233 |
+
</tr>
|
234 |
+
|
235 |
+
<tr>
|
236 |
+
<td style="text-align:left; background-color: #DAE8FF; color: black;">DeepSeek-R1-Distill-Qwen-7B</td>
|
237 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">10.36</td>
|
238 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">15.35</td>
|
239 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">50.72</td>
|
240 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">9.94</td>
|
241 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">47.14</td>
|
242 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">65.04</td>
|
243 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">42.76</td>
|
244 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">78.47</td>
|
245 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">79.89</td>
|
246 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">78.43</td>
|
247 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">59.10</td>
|
248 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">42.45</td>
|
249 |
+
</tr>
|
250 |
+
|
251 |
+
<tr>
|
252 |
+
<td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.1-8B-Instruct</td>
|
253 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">37.58</td>
|
254 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">30.34</td>
|
255 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">66.77</td>
|
256 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">28.7</td>
|
257 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">65.84</td>
|
258 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">68.55</td>
|
259 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">50.78</td>
|
260 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">79.15</td>
|
261 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">89.63</td>
|
262 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">85.79</td>
|
263 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">73.20</td>
|
264 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">85.73</td>
|
265 |
+
</tr>
|
266 |
+
|
267 |
+
|
268 |
+
<tr>
|
269 |
+
<td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.1-2B-Instruct</td>
|
270 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">23.3</td>
|
271 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">27.17</td>
|
272 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">57.11</td>
|
273 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">20.55</td>
|
274 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">59.79</td>
|
275 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">54.46</td>
|
276 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">18.68</td>
|
277 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">67.55</td>
|
278 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">79.45</td>
|
279 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">75.26</td>
|
280 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">63.59</td>
|
281 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">84.7</td>
|
282 |
+
</tr>
|
283 |
+
|
284 |
+
<tr>
|
285 |
+
<td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.2-8B-Instruct</td>
|
286 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">55.25</td>
|
287 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">61.19</td>
|
288 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">66.79</td>
|
289 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">28.04</td>
|
290 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">66.92</td>
|
291 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">64.77</td>
|
292 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">50.95</td>
|
293 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">81.65</td>
|
294 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">89.35</td>
|
295 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">85.72</td>
|
296 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">74.31</td>
|
297 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">85.42</td>
|
298 |
+
|
299 |
+
</tr>
|
300 |
+
|
301 |
+
<tr>
|
302 |
+
<td style="text-align:left; background-color: #DAE8FF; color: black;"><b>Granite-3.2-2B-Instruct</b></td>
|
303 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">24.86</td>
|
304 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">34.51</td>
|
305 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">57.18</td>
|
306 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">20.56</td>
|
307 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">59.8</td>
|
308 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">52.27</td>
|
309 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">21.12</td>
|
310 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">67.02</td>
|
311 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">80.13</td>
|
312 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">73.39</td>
|
313 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">61.55</td>
|
314 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">83.23</td>
|
315 |
+
</tr>
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
</tbody></table>
|
322 |
+
|
323 |
+
**Training Data:**
|
324 |
+
Overall, our training data is largely comprised of two key sources: (1) publicly available datasets with permissive license, (2) internal synthetically generated data targeted to enhance reasoning capabilites.
|
325 |
+
<!-- A detailed attribution of datasets can be found in [Granite 3.2 Technical Report (coming soon)](#), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf). -->
|
326 |
+
|
327 |
+
**Infrastructure:**
|
328 |
+
We train Granite-3.2-2B-Instruct using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
|
329 |
+
|
330 |
+
**Ethical Considerations and Limitations:**
|
331 |
+
Granite-3.2-2B-Instruct builds upon Granite-3.1-2B-Instruct, leveraging both permissively licensed open-source and select proprietary data for enhanced performance. Since it inherits its foundation from the previous model, all ethical considerations and limitations applicable to [Granite-3.1-2B-Instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct) remain relevant.
|
332 |
+
|
333 |
+
|
334 |
+
**Resources**
|
335 |
+
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
|
336 |
+
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
|
337 |
+
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
|
338 |
+
|
339 |
+
<!-- ## Citation
|
340 |
+
```
|
341 |
+
@misc{granite-models,
|
342 |
+
author = {author 1, author2, ...},
|
343 |
+
title = {},
|
344 |
+
journal = {},
|
345 |
+
volume = {},
|
346 |
+
year = {2024},
|
347 |
+
url = {https://arxiv.org/abs/0000.00000},
|
348 |
+
}
|
349 |
+
``` -->
|