End of training
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- axolotl
|
6 |
+
- generated_from_trainer
|
7 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
8 |
+
model-index:
|
9 |
+
- name: math-llama-3-8b-instruct
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
17 |
+
<details><summary>See axolotl config</summary>
|
18 |
+
|
19 |
+
axolotl version: `0.4.0`
|
20 |
+
```yaml
|
21 |
+
adapter: qlora
|
22 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
23 |
+
base_model_config: meta-llama/Meta-Llama-3-8B-Instruct
|
24 |
+
datasets:
|
25 |
+
- path: vicgalle/alpaca-gpt4
|
26 |
+
type: alpaca
|
27 |
+
flash_attention: true
|
28 |
+
gradient_accumulation_steps: 4
|
29 |
+
gradient_checkpointing: true
|
30 |
+
hf_use_auth_token: true
|
31 |
+
hub_model_id: ibivibiv/math-llama-3-8b-instruct
|
32 |
+
learning_rate: 0.0002
|
33 |
+
load_in_4bit: true
|
34 |
+
logging_steps: 1
|
35 |
+
lora_alpha: 16
|
36 |
+
lora_dropout: 0.05
|
37 |
+
lora_r: 32
|
38 |
+
lora_target_linear: true
|
39 |
+
lr_scheduler: cosine
|
40 |
+
micro_batch_size: 2
|
41 |
+
model_type: AutoModelForCausalLM
|
42 |
+
num_epochs: 3
|
43 |
+
optimizer: paged_adamw_32bit
|
44 |
+
output_dir: /job/out
|
45 |
+
sample_packing: true
|
46 |
+
save_safetensors: true
|
47 |
+
sequence_len: 4096
|
48 |
+
special_tokens:
|
49 |
+
pad_token: <|end_of_text|>
|
50 |
+
tokenizer_type: AutoTokenizer
|
51 |
+
wandb_project: TuneStudio
|
52 |
+
wandb_run_id: mathllama
|
53 |
+
wandb_watch: 'true'
|
54 |
+
warmup_steps: 10
|
55 |
+
|
56 |
+
```
|
57 |
+
|
58 |
+
</details><br>
|
59 |
+
|
60 |
+
# math-llama-3-8b-instruct
|
61 |
+
|
62 |
+
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.
|
63 |
+
|
64 |
+
## Model description
|
65 |
+
|
66 |
+
More information needed
|
67 |
+
|
68 |
+
## Intended uses & limitations
|
69 |
+
|
70 |
+
More information needed
|
71 |
+
|
72 |
+
## Training and evaluation data
|
73 |
+
|
74 |
+
More information needed
|
75 |
+
|
76 |
+
## Training procedure
|
77 |
+
|
78 |
+
### Training hyperparameters
|
79 |
+
|
80 |
+
The following hyperparameters were used during training:
|
81 |
+
- learning_rate: 0.0002
|
82 |
+
- train_batch_size: 2
|
83 |
+
- eval_batch_size: 2
|
84 |
+
- seed: 42
|
85 |
+
- distributed_type: multi-GPU
|
86 |
+
- num_devices: 2
|
87 |
+
- gradient_accumulation_steps: 4
|
88 |
+
- total_train_batch_size: 16
|
89 |
+
- total_eval_batch_size: 4
|
90 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
91 |
+
- lr_scheduler_type: cosine
|
92 |
+
- lr_scheduler_warmup_steps: 10
|
93 |
+
- num_epochs: 3
|
94 |
+
|
95 |
+
### Training results
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- PEFT 0.10.0
|
102 |
+
- Transformers 4.40.2
|
103 |
+
- Pytorch 2.1.2+cu118
|
104 |
+
- Datasets 2.19.1
|
105 |
+
- Tokenizers 0.19.1
|