|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch MAMBA2 model.""" |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
) |
|
from transformers.utils.import_utils import is_causal_conv1d_available, is_torch_available, _is_package_available, version |
|
from .configuration_ibs2 import IBS2Config |
|
|
|
def is_mamba_2_ssm_available(): |
|
if is_torch_available(): |
|
import torch |
|
|
|
if not torch.cuda.is_available(): |
|
return False |
|
else: |
|
if _is_package_available("mamba_ssm"): |
|
import mamba_ssm |
|
|
|
if version.parse(mamba_ssm.__version__) >= version.parse("2.0.4"): |
|
return True |
|
return False |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if is_mamba_2_ssm_available(): |
|
from mamba_ssm.ops.triton.selective_state_update import selective_state_update |
|
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined |
|
else: |
|
mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, selective_state_update = None, None, None |
|
|
|
if is_causal_conv1d_available(): |
|
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update |
|
else: |
|
causal_conv1d_update, causal_conv1d_fn = None, None |
|
|
|
is_fast_path_available = all( |
|
( |
|
selective_state_update, |
|
mamba_chunk_scan_combined, |
|
mamba_split_conv1d_scan_combined, |
|
causal_conv1d_fn, |
|
causal_conv1d_update, |
|
) |
|
) |
|
|
|
_CHECKPOINT_FOR_DOC = "mistralai/mamba-codestral-7B-v0.1" |
|
_CONFIG_FOR_DOC = "Mamba2Config" |
|
|
|
|
|
|
|
|
|
|
|
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int): |
|
""" |
|
Padding x tensor with `pad_size` on the seq_len dim (dim=1) |
|
|
|
Assumes that we only have tensors of either size 4 or 3 |
|
""" |
|
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0) |
|
|
|
return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0) |
|
|
|
|
|
def reshape_into_chunks(input_tensor, pad_size, chunk_size): |
|
""" |
|
Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and |
|
simultaneously splitting it into chunk sequences. |
|
|
|
Assumes that we only have tensors of either size 4 or 3 |
|
""" |
|
|
|
input_tensor = pad_tensor_by_size(input_tensor, pad_size) |
|
|
|
if len(input_tensor.shape) == 3: |
|
|
|
return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2]) |
|
else: |
|
|
|
return input_tensor.reshape( |
|
input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3] |
|
) |
|
|
|
|
|
def segment_sum(input_tensor): |
|
""" |
|
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions. |
|
""" |
|
chunk_size = input_tensor.size(-1) |
|
|
|
|
|
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size) |
|
|
|
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1) |
|
input_tensor = input_tensor.masked_fill(~mask, 0) |
|
|
|
tensor_segsum = torch.cumsum(input_tensor, dim=-2) |
|
|
|
|
|
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0) |
|
tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf) |
|
return tensor_segsum |
|
|
|
|
|
def apply_mask_to_padding_states(hidden_states, attention_mask): |
|
""" |
|
Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66 |
|
""" |
|
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: |
|
dtype = hidden_states.dtype |
|
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) |
|
|
|
return hidden_states |
|
|
|
|
|
class Mamba2Cache: |
|
""" |
|
Arguments: |
|
config: Mamba2Config |
|
batch_size: int |
|
dtype: torch.dtype |
|
device: torch.device |
|
|
|
Attributes: |
|
dtype: (`torch.dtype`): |
|
The default `dtype` used to initializing the cache. |
|
conv_kernel_size: (`int`): |
|
Model's convolution kernel size taken from config. |
|
n_groups: (`int`): |
|
Model's number of groups taken from the config - similar to tensor parallel in Transformer. |
|
state_size: (`int`): |
|
Model's SSM state size taken from config. |
|
num_heads: (`int`): |
|
The number of heads used in the linear attention / SSM. |
|
head_dim: (`int`): |
|
The respective dimension of the heads used in the linear attention / SSM. |
|
intermediate_size: (`int`): |
|
Model's intermediate_size based on (expand * hidden_dim) from config. |
|
conv_states: (`torch.Tensor`): |
|
A tensor of shape `[num_layers, batch_size, conv_kernel_size, intermediate_size + 2 * n_groups * state_size]` that holds convolutional states. |
|
ssm_states: (`torch.Tensor`): |
|
A tensor of shape `[num_layers, batch_size, num_heads, head_dim, state_size]` that holds ssm states. |
|
""" |
|
|
|
def __init__( |
|
self, config: IBS2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None |
|
): |
|
self.dtype = dtype |
|
self.conv_kernel_size = config.conv_kernel |
|
self.n_groups = config.n_groups |
|
self.state_size = config.state_size |
|
self.num_heads = config.num_heads |
|
self.head_dim = config.head_dim |
|
self.intermediate_size = int(config.expand * config.hidden_size) |
|
|
|
self.conv_states = torch.zeros( |
|
config.num_hidden_layers, |
|
batch_size, |
|
self.intermediate_size + 2 * self.n_groups * self.state_size, |
|
self.conv_kernel_size, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
self.ssm_states = torch.zeros( |
|
config.num_hidden_layers, |
|
batch_size, |
|
self.num_heads, |
|
self.head_dim, |
|
self.state_size, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
def update_conv_state( |
|
self, layer_idx: int, new_conv_state: torch.Tensor, cache_init: bool = False |
|
) -> torch.Tensor: |
|
if cache_init: |
|
self.conv_states[layer_idx] = new_conv_state.to(self.conv_states.device) |
|
else: |
|
self.conv_states[layer_idx] = self.conv_states[layer_idx].roll(shifts=-1, dims=-1) |
|
self.conv_states[layer_idx][:, :, -1] = new_conv_state[:, 0, :].to(self.conv_states.device) |
|
return self.conv_states[layer_idx] |
|
|
|
def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor): |
|
self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device) |
|
return self.ssm_states[layer_idx] |
|
|
|
def reset(self): |
|
self.conv_states.zero_() |
|
self.ssm_states.zero_() |
|
|
|
|
|
class MambaRMSNormGated(torch.nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states, gate=None): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
|
|
if gate is not None: |
|
hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32)) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
class Normalize(nn.Module): |
|
def __init__(self, min_value=None, max_value=None): |
|
super().__init__() |
|
self.min_value = min_value |
|
self.max_value = max_value |
|
|
|
def forward(self, value_states): |
|
|
|
min_val = value_states.min(dim=-1, keepdim=True).values |
|
max_val = value_states.max(dim=-1, keepdim=True).values |
|
|
|
|
|
if self.min_value is None and self.max_value is not None: |
|
|
|
scale_factor = self.max_value / (max_val + 1e-6) |
|
return value_states * scale_factor, scale_factor, None |
|
elif self.max_value is None and self.min_value is not None: |
|
|
|
scale_factor = self.min_value / (min_val + 1e-6) |
|
return value_states * scale_factor, scale_factor, None |
|
elif self.min_value is not None and self.max_value is not None: |
|
|
|
scale_factor = (self.max_value - self.min_value) / (max_val - min_val + 1e-6) |
|
shift_factor = self.min_value - min_val * scale_factor |
|
normalized_value_states = value_states * scale_factor + shift_factor |
|
return normalized_value_states, scale_factor, shift_factor |
|
else: |
|
|
|
return value_states, None, None |
|
|
|
|
|
|
|
class GammaIB(nn.Module): |
|
def __init__(self, hidden_size, alphas=None, return_attn=False, **kwargs) -> None: |
|
super().__init__() |
|
self.alphas = alphas |
|
|
|
self.hidden_size = hidden_size |
|
self._auxiliary_loss = 0 |
|
self.epoch_frac = 0 |
|
self.epoch_threshold = -1 |
|
self.normalizer = Normalize(max_value=10, min_value=0.1) |
|
self.return_attn = return_attn |
|
self._attn = None |
|
|
|
|
|
|
|
def get_auxiliary_loss(self): |
|
loss = self._auxiliary_loss |
|
self._auxiliary_loss = 0.0 |
|
|
|
return loss |
|
|
|
def init_alphas(self, param_alphas): |
|
|
|
if self.alphas is None: |
|
maxmimum = 8 |
|
else: |
|
maxmimum = param_alphas.size(1) / self.alphas.size(0) * self.alphas.max().item() |
|
length = param_alphas.shape[1] |
|
alphas = torch.linspace(maxmimum, 1, steps=length).float().to(param_alphas.device) |
|
self.alphas = alphas |
|
|
|
def compute_loss(self, param_alphas, epsilon=1e-6): |
|
if self.alphas is None: |
|
self.init_alphas(param_alphas) |
|
print(f"Gamma prior alpha first: {self.alphas[0]}, last: {self.alphas[-1]}, size: {self.alphas.size(0)}", ) |
|
if self.alphas.size(0) != param_alphas.size(1): |
|
self.init_alphas(param_alphas) |
|
print(f"Gamma prior alpha first: {self.alphas[0]}, last: {self.alphas[-1]}, size: {self.alphas.size(0)}", ) |
|
|
|
params = self.alphas.unsqueeze(-1).expand(param_alphas.shape) |
|
reg_loss = (torch.lgamma(self.alphas) - torch.lgamma(params) + (params - self.alphas) * torch.digamma(params)).mean() |
|
|
|
return reg_loss |
|
|
|
def forward(self, states): |
|
|
|
hidden_states, alphas = torch.split( |
|
states, |
|
[self.hidden_size, 1], |
|
dim=-1 |
|
) |
|
if self.epoch_frac < self.epoch_threshold: |
|
return hidden_states |
|
|
|
|
|
alphas = nn.functional.softplus(alphas) - torch.log(torch.tensor(2.0)) + torch.tensor(1.0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
shaped_alphas = alphas.expand(-1, -1, hidden_states.shape[2]) |
|
if self.training: |
|
self._auxiliary_loss = self.compute_loss(alphas) |
|
value_states = hidden_states.abs() |
|
normalized_value_states, scale_factor, shift_factor = self.normalizer(value_states) |
|
|
|
betas = torch.reciprocal(normalized_value_states) |
|
sign_states = torch.sign(hidden_states) |
|
gamma_dist = torch.distributions.gamma.Gamma(shaped_alphas, betas) |
|
samples = gamma_dist.rsample() |
|
|
|
if shift_factor is not None: |
|
time_states = samples * sign_states / scale_factor - shift_factor / scale_factor |
|
else: |
|
time_states = samples * sign_states / scale_factor |
|
else: |
|
time_states = shaped_alphas * hidden_states |
|
|
|
if self.return_attn: |
|
|
|
if time_states.shape[-2] == 1: |
|
pass |
|
else: |
|
self._attn = torch.exp(-time_states).mean(dim=-1).detach().cpu() |
|
|
|
return time_states |
|
|
|
class BernoulliIB(nn.Module): |
|
def __init__(self, hidden_size, temp=1, thetas=None, max_seqlen=1024, return_attn=False, **kwargs) -> None: |
|
super().__init__() |
|
self.epoch_frac = 0 |
|
self.epoch_threshold = 0 |
|
self.temp = temp |
|
self.thetas = thetas |
|
self.hidden_size = hidden_size |
|
|
|
self._auxiliary_loss = 0 |
|
self.max_seqlen = 4096 |
|
self.return_attn = return_attn |
|
self._attn = None |
|
|
|
def init_thetas(self, attn): |
|
|
|
|
|
seq_len = attn.shape[1] |
|
if seq_len <= self.max_seqlen: |
|
positions = torch.arange(self.max_seqlen).float().to(attn.device) |
|
else: |
|
positions = torch.arange(self.max_seqlen - seq_len, self.max_seqlen).float().to(attn.device) |
|
|
|
|
|
|
|
decay_factor = 0.8 - 0.6 * torch.exp(positions / self.max_seqlen - 1) |
|
|
|
|
|
self.thetas = decay_factor |
|
return decay_factor |
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_auxiliary_loss(self): |
|
loss = self._auxiliary_loss |
|
self._auxiliary_loss = 0.0 |
|
return loss |
|
|
|
def compute_loss(self, att, epsilon=1e-6): |
|
if self.thetas is None: |
|
thetas = self.init_thetas(att) |
|
print(f"Bernoulli prior theta first: {self.thetas[0]:.2f}, last: {self.thetas[-1]:.2f}, size: {self.thetas.size(0)}") |
|
|
|
if self.thetas.size(0) >= att.size(1): |
|
thetas = self.thetas[-att.size(1):] |
|
elif self.thetas.size(0) < att.size(1): |
|
thetas = self.init_thetas(att) |
|
print(f"Bernoulli prior theta first: {self.thetas[0]:.2f}, last: {self.thetas[-1]:.2f}, size: {self.thetas.size(0)}") |
|
|
|
thetas = thetas.unsqueeze(-1).expand(att.shape) |
|
|
|
reg_loss = (att * torch.log(att / thetas + epsilon) + |
|
(1 - att) * torch.log((1 - att) / (1 - thetas + epsilon) + epsilon)).mean() |
|
|
|
return reg_loss |
|
|
|
def forward(self, states): |
|
|
|
hidden_states, attn = torch.split( |
|
states, |
|
[self.hidden_size, 1], |
|
dim=-1 |
|
) |
|
|
|
|
|
attn = attn + torch.tensor(1.0) |
|
if self.epoch_frac < self.epoch_threshold: |
|
return hidden_states |
|
if self.training: |
|
|
|
random_noise = torch.empty_like(attn).uniform_(1e-10, 1 - 1e-10) |
|
random_noise = torch.log(random_noise) - torch.log(1.0 - random_noise) |
|
attn_bern = ((attn + random_noise) / self.temp).sigmoid() |
|
else: |
|
attn_bern = (attn).sigmoid() |
|
self._auxiliary_loss = self.compute_loss(attn_bern) |
|
if self.return_attn: |
|
if attn_bern.shape[-2] == 1: |
|
pass |
|
else: |
|
self._attn = attn_bern.detach().cpu() |
|
return hidden_states * attn_bern |
|
|
|
|
|
class Mamba2Mixer(nn.Module): |
|
""" |
|
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. |
|
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) |
|
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, |
|
and is why Mamba is called **selective** state spaces) |
|
""" |
|
|
|
def __init__(self, config: IBS2Config, layer_idx: int): |
|
super().__init__() |
|
self.num_heads = config.num_heads |
|
self.hidden_size = config.hidden_size |
|
self.ssm_state_size = config.state_size |
|
self.conv_kernel_size = config.conv_kernel |
|
self.intermediate_size = int(config.expand * self.hidden_size) |
|
self.time_step_rank = int(config.time_step_rank) |
|
self.layer_idx = layer_idx |
|
self.use_conv_bias = config.use_conv_bias |
|
self.activation = config.hidden_act |
|
self.act = ACT2FN[config.hidden_act] |
|
|
|
self.layer_norm_epsilon = config.layer_norm_epsilon |
|
self.rms_norm = config.rms_norm |
|
|
|
self.n_groups = config.n_groups |
|
self.head_dim = config.head_dim |
|
self.chunk_size = config.chunk_size |
|
|
|
self.time_step_limit = config.time_step_limit |
|
self.time_step_min = config.time_step_min |
|
self.time_step_max = config.time_step_max |
|
|
|
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size |
|
self.conv1d = nn.Conv1d( |
|
in_channels=self.conv_dim, |
|
out_channels=self.conv_dim, |
|
bias=config.use_conv_bias, |
|
kernel_size=config.conv_kernel, |
|
groups=self.conv_dim, |
|
padding=config.conv_kernel - 1, |
|
) |
|
|
|
|
|
|
|
self._attn = None |
|
self.return_attn = config.return_attn |
|
assert config.ib_type in ['bernoulli', 'gamma'], "Invalid IB Prior." |
|
IB_cls = BernoulliIB if config.ib_type == 'bernoulli' else GammaIB if config.ib_type == 'gamma' else None |
|
self.ib4dt = IB_cls(self.num_heads, return_attn=config.return_attn) if self.layer_idx in [0, 31, 63] else None |
|
|
|
self.ib_proj = nn.Linear( |
|
self.hidden_size, |
|
1, |
|
bias=False, |
|
) if self.ib4dt else None |
|
projection_size = self.intermediate_size + self.conv_dim + self.num_heads |
|
self.in_proj = nn.Linear( |
|
self.hidden_size, |
|
projection_size, |
|
bias=config.use_bias, |
|
) |
|
|
|
|
|
|
|
|
|
self.dt_bias = nn.Parameter(torch.ones(self.num_heads)) |
|
|
|
|
|
|
|
A = torch.arange(1, self.num_heads + 1) |
|
self.A_log = nn.Parameter(torch.log(A)) |
|
self.A_log._no_weight_decay = True |
|
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon) |
|
self.D = nn.Parameter(torch.ones(self.num_heads)) |
|
self.D._no_weight_decay = True |
|
|
|
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias) |
|
self.use_bias = config.use_bias |
|
|
|
if not is_fast_path_available: |
|
logger.warning_once( |
|
"The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`" |
|
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and" |
|
" https://github.com/Dao-AILab/causal-conv1d" |
|
) |
|
|
|
def get_token_saliency(self): |
|
attn = self._attn |
|
self._attn = None |
|
return attn |
|
|
|
def cuda_kernels_forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cache_params: Optional[Mamba2Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
|
|
hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask) |
|
projected_states = self.in_proj(hidden_states) |
|
|
|
|
|
if self.ib4dt: |
|
ib_state = self.ib_proj(hidden_states) |
|
dim = self.head_dim * self.num_heads |
|
zx, BC, dt = torch.split(projected_states, [dim * 2, + self.n_groups * self.ssm_state_size * 2, self.num_heads], dim=-1) |
|
dt = self.ib4dt(torch.cat([dt, ib_state], dim=-1)) |
|
projected_states = torch.cat([zx, BC, dt], dim=-1) |
|
if self.return_attn and dt.shape[-2] != 1: |
|
dt_plus = nn.functional.softplus(dt + self.dt_bias) |
|
dA = (dt_plus * (-torch.exp(self.A_log.float()))) |
|
|
|
attn = dA.mean(dim=-1) |
|
self._attn = attn |
|
|
|
|
|
batch_size, seq_len, _ = hidden_states.shape |
|
groups_time_state_size = self.n_groups * self.ssm_state_size |
|
d_mlp = ( |
|
projected_states.shape[-1] |
|
- 2 * self.intermediate_size |
|
- 2 * self.n_groups * self.ssm_state_size |
|
- self.num_heads |
|
) // 2 |
|
|
|
|
|
if cache_params is not None and cache_position is not None and cache_position[0] > 0: |
|
_, _, gate, hidden_states_B_C, dt = projected_states.squeeze(1).split( |
|
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 |
|
) |
|
|
|
|
|
hidden_states_B_C = causal_conv1d_update( |
|
hidden_states_B_C, |
|
cache_params.conv_states[self.layer_idx], |
|
self.conv1d.weight.squeeze(1), |
|
self.conv1d.bias, |
|
self.activation, |
|
) |
|
|
|
hidden_states, B, C = torch.split( |
|
hidden_states_B_C, |
|
[self.intermediate_size, groups_time_state_size, groups_time_state_size], |
|
dim=-1, |
|
) |
|
|
|
|
|
A = -torch.exp(self.A_log.float()) |
|
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) |
|
dt = dt[:, :, None].expand(-1, -1, self.head_dim) |
|
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim) |
|
D = self.D[:, None, ...].expand(-1, self.head_dim) |
|
B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups) |
|
C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups) |
|
hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim) |
|
hidden_states = selective_state_update( |
|
cache_params.ssm_states[self.layer_idx], |
|
hidden_states_reshaped, |
|
dt, |
|
A, |
|
B, |
|
C, |
|
D, |
|
z=None, |
|
dt_bias=dt_bias, |
|
dt_softplus=True, |
|
) |
|
hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim) |
|
hidden_states = self.norm(hidden_states, gate) |
|
|
|
|
|
out = self.out_proj(hidden_states)[:, None, ...] |
|
|
|
|
|
else: |
|
A = -torch.exp(self.A_log.float()) |
|
dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit} |
|
|
|
|
|
if self.training and cache_params is None: |
|
out = mamba_split_conv1d_scan_combined( |
|
projected_states, |
|
self.conv1d.weight.squeeze(1), |
|
self.conv1d.bias, |
|
self.dt_bias, |
|
A, |
|
D=self.D, |
|
chunk_size=self.chunk_size, |
|
seq_idx=None, |
|
activation=self.activation, |
|
rmsnorm_weight=self.norm.weight, |
|
rmsnorm_eps=self.norm.variance_epsilon, |
|
outproj_weight=self.out_proj.weight, |
|
outproj_bias=self.out_proj.bias, |
|
headdim=self.head_dim, |
|
ngroups=self.n_groups, |
|
norm_before_gate=False, |
|
return_final_states=False, |
|
**dt_limit_kwargs, |
|
) |
|
|
|
else: |
|
_, _, gate, hidden_states_B_C, dt = projected_states.split( |
|
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 |
|
) |
|
|
|
|
|
|
|
if cache_params is not None: |
|
hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2) |
|
conv_states = nn.functional.pad( |
|
hidden_states_B_C_transposed, |
|
(cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0), |
|
) |
|
cache_params.update_conv_state( |
|
layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True |
|
) |
|
|
|
if self.activation not in ["silu", "swish"]: |
|
hidden_states_B_C = self.act( |
|
self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2) |
|
) |
|
else: |
|
hidden_states_B_C = causal_conv1d_fn( |
|
x=hidden_states_B_C.transpose(1, 2), |
|
weight=self.conv1d.weight.squeeze(1), |
|
bias=self.conv1d.bias, |
|
activation=self.activation, |
|
).transpose(1, 2) |
|
|
|
hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask) |
|
hidden_states, B, C = torch.split( |
|
hidden_states_B_C, |
|
[self.intermediate_size, groups_time_state_size, groups_time_state_size], |
|
dim=-1, |
|
) |
|
|
|
|
|
scan_output, ssm_state = mamba_chunk_scan_combined( |
|
hidden_states.view(batch_size, seq_len, -1, self.head_dim), |
|
dt, |
|
A, |
|
B.view(batch_size, seq_len, self.n_groups, -1), |
|
C.view(batch_size, seq_len, self.n_groups, -1), |
|
chunk_size=self.chunk_size, |
|
D=self.D, |
|
z=None, |
|
seq_idx=None, |
|
return_final_states=True, |
|
dt_bias=self.dt_bias, |
|
dt_softplus=True, |
|
**dt_limit_kwargs, |
|
) |
|
|
|
|
|
if ssm_state is not None and cache_params is not None: |
|
cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state) |
|
|
|
scan_output = scan_output.view(batch_size, seq_len, -1) |
|
|
|
scan_output = self.norm(scan_output, gate) |
|
|
|
|
|
out = self.out_proj(scan_output) |
|
return out |
|
|
|
|
|
def torch_forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None): |
|
batch_size, seq_len, _ = input_states.shape |
|
dtype = input_states.dtype |
|
|
|
|
|
input_states = apply_mask_to_padding_states(input_states, attention_mask) |
|
projected_states = self.in_proj(input_states) |
|
|
|
if self.ib4dt: |
|
attn = self.ib_proj(input_states) |
|
dim = self.head_dim * self.num_heads |
|
zx, BC, dt = torch.split(projected_states, [dim * 2, + self.n_groups * self.ssm_state_size * 2, self.num_heads], dim=-1) |
|
dt = self.ib4dt(torch.cat([dt, attn], dim=-1)) |
|
projected_states = torch.cat([zx, BC, dt], dim=-1) |
|
|
|
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size-self.num_heads) // 2 |
|
_, _, gate, hidden_states_B_C, dt = projected_states.split( |
|
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 |
|
) |
|
|
|
|
|
if cache_params is not None and cache_position is not None and cache_position[0] > 0: |
|
cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=hidden_states_B_C, cache_init=False) |
|
|
|
|
|
conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device) |
|
|
|
hidden_states_B_C = torch.sum( |
|
conv_states * self.conv1d.weight.squeeze(1), dim=-1 |
|
) |
|
if self.use_conv_bias: |
|
hidden_states_B_C = hidden_states_B_C + self.conv1d.bias |
|
hidden_states_B_C = self.act(hidden_states_B_C) |
|
else: |
|
|
|
if cache_params is not None: |
|
hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2) |
|
conv_states = nn.functional.pad( |
|
hidden_states_B_C_transposed, (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0) |
|
) |
|
cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True) |
|
|
|
hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)) |
|
|
|
hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask) |
|
hidden_states, B, C = torch.split( |
|
hidden_states_B_C, |
|
[self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], |
|
dim=-1 |
|
) |
|
|
|
|
|
A = -torch.exp(self.A_log.float()) |
|
if cache_params is not None and cache_position is not None and cache_position[0] > 0: |
|
|
|
cache_device = cache_params.ssm_states.device |
|
|
|
|
|
|
|
dt = dt[:, 0, :][:, None, ...] |
|
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim) |
|
|
|
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim) |
|
|
|
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype)) |
|
dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1]) |
|
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) |
|
|
|
dA = (torch.exp(dt[..., None] * A)).to(device=cache_device) |
|
|
|
|
|
|
|
|
|
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :] |
|
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous() |
|
B = B.reshape(batch_size, -1, B.shape[-1]) |
|
|
|
dB = dt[..., None] * B[..., None, :] |
|
|
|
|
|
|
|
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim) |
|
dBx = (dB * hidden_states[..., None]).to(device=cache_device) |
|
|
|
|
|
cache_params.update_ssm_state( |
|
layer_idx=self.layer_idx, |
|
new_ssm_state=cache_params.ssm_states[self.layer_idx] * dA + dBx |
|
) |
|
|
|
|
|
|
|
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :] |
|
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous() |
|
C = C.reshape(batch_size, -1, C.shape[-1]) |
|
|
|
|
|
ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype) |
|
|
|
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) |
|
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) |
|
y = torch.bmm(ssm_states_reshaped, C_reshaped) |
|
y = y.view(batch_size, self.num_heads, self.head_dim) |
|
|
|
|
|
|
|
D = self.D[..., None].expand(self.D.shape[0], self.head_dim) |
|
y = (y + hidden_states * D).to(y.dtype) |
|
|
|
|
|
y = y.reshape(batch_size, -1)[:, None, ...] |
|
else: |
|
|
|
dt = nn.functional.softplus(dt + self.dt_bias) |
|
dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1]) |
|
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float() |
|
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() |
|
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() |
|
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1) |
|
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1) |
|
pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size |
|
|
|
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size) |
|
|
|
|
|
hidden_states = hidden_states * dt[..., None] |
|
A = A.to(hidden_states.dtype) * dt |
|
|
|
|
|
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)] |
|
|
|
|
|
A = A.permute(0, 3, 1, 2) |
|
A_cumsum = torch.cumsum(A, dim=-1) |
|
|
|
|
|
|
|
L = torch.exp(segment_sum(A)) |
|
|
|
|
|
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :] |
|
G = G_intermediate.sum(dim=-1) |
|
|
|
|
|
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None] |
|
M = M_intermediate.sum(dim=-1) |
|
|
|
|
|
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3) |
|
|
|
|
|
|
|
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum)) |
|
B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None] |
|
states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2) |
|
|
|
|
|
|
|
if cache_params is not None and cache_position is not None and cache_position[0] > 0: |
|
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device) |
|
else: |
|
previous_states = torch.zeros_like(states[:, :1]) |
|
states = torch.cat([previous_states, states], dim=1) |
|
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0)))) |
|
decay_chunk = decay_chunk.transpose(1, 3) |
|
new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1) |
|
states, ssm_state = new_states[:, :-1], new_states[:, -1] |
|
|
|
|
|
|
|
state_decay_out = torch.exp(A_cumsum) |
|
C_times_states = (C[..., None, :] * states[:, :, None, ...]) |
|
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1) |
|
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None]) |
|
|
|
|
|
y = Y_diag + Y_off |
|
|
|
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim) |
|
|
|
y = y + D_residual |
|
|
|
if pad_size > 0: |
|
y = y[:, :seq_len, :, :] |
|
y = y.reshape(batch_size, seq_len, -1) |
|
|
|
|
|
if ssm_state is not None and cache_params is not None: |
|
cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state) |
|
|
|
scan_output = self.norm(y, gate) |
|
|
|
|
|
|
|
|
|
contextualized_states = self.out_proj(scan_output.to(dtype)) |
|
return contextualized_states |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
cache_params: Optional[Mamba2Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
if is_fast_path_available and "cuda" in self.in_proj.weight.device.type: |
|
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask) |
|
dtype = hidden_states.dtype |
|
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: |
|
|
|
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) |
|
|
|
return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask) |
|
|
|
|
|
class Mamba2RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class IBS2Block(nn.Module): |
|
def __init__(self, config, layer_idx): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.residual_in_fp32 = config.residual_in_fp32 |
|
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
self.mixer = Mamba2Mixer(config, layer_idx=layer_idx) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
cache_params: Optional[Mamba2Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
residual = hidden_states |
|
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype)) |
|
if self.residual_in_fp32: |
|
residual = residual.to(torch.float32) |
|
|
|
hidden_states = self.mixer( |
|
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask |
|
) |
|
hidden_states = residual + hidden_states |
|
return hidden_states |
|
|
|
|
|
class Mamba2PreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = IBS2Config |
|
base_model_prefix = "backbone" |
|
_no_split_modules = ["Mamba2Block"] |
|
supports_gradient_checkpointing = True |
|
_is_stateful = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, Mamba2Mixer): |
|
|
|
if getattr(module, "ib_proj"): |
|
nn.init.zeros_(module.ib_proj.weight) |
|
|
|
module.A_log._no_weight_decay = True |
|
module.D._no_weight_decay = True |
|
|
|
dt = torch.exp( |
|
torch.rand(self.config.num_heads) |
|
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) |
|
+ math.log(self.config.time_step_min) |
|
).clamp(min=self.config.time_step_floor) |
|
|
|
|
|
inv_dt = dt + torch.log(-torch.expm1(-dt)) |
|
with torch.no_grad(): |
|
module.dt_bias.copy_(inv_dt) |
|
module.dt_bias._no_reinit = True |
|
|
|
if isinstance(module, nn.Linear): |
|
if module.bias is not None: |
|
if not getattr(module.bias, "_no_reinit", False): |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
nn.init.normal_(module.weight, std=self.config.initializer_range) |
|
|
|
if self.config.rescale_prenorm_residual: |
|
|
|
|
|
|
|
|
|
|
|
|
|
for name, p in module.named_parameters(): |
|
if name in ["out_proj.weight"]: |
|
|
|
|
|
|
|
|
|
nn.init.kaiming_uniform_(p, a=math.sqrt(5)) |
|
with torch.no_grad(): |
|
p /= math.sqrt(self.config.num_hidden_layers) |
|
|
|
|
|
@dataclass |
|
|
|
class Mamba2Output(ModelOutput): |
|
""" |
|
Class for the MAMBA2 model outputs. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
cache_params (`Mamba2Cache`): |
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to |
|
avoid providing the old `input_ids`. |
|
|
|
Includes both the State space model state matrices after the selective scan, and the Convolutional states |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
""" |
|
|
|
last_hidden_state: Optional[torch.FloatTensor] = None |
|
cache_params: Optional[Mamba2Cache] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
|
|
class Mamba2CausalLMOutput(ModelOutput): |
|
""" |
|
Base class for causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
cache_params (`Mamba2Cache`): |
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to |
|
avoid providing the old `input_ids`. |
|
|
|
Includes both the State space model state matrices after the selective scan, and the Convolutional states |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
cache_params: Optional[Mamba2Cache] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
MAMBA2_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`Mamba2Config`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
MAMBA2_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as |
|
`input_ids`. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
cache_params (`Mamba2Cache`, *optional*): |
|
If passed along, the model uses the previous state in all the blocks (which will give the output for the |
|
`input_ids` provided as if the model add `state_input_ids + input_ids` as context). |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
The position of the current input in the cache. This is used to ensure that the cache is correctly updated. |
|
If `cache_params` is passed, `cache_position` should also be passed. |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare MAMBA2 Model transformer outputting raw hidden-states without any specific head on top.", |
|
MAMBA2_START_DOCSTRING, |
|
) |
|
class IBS2Model(Mamba2PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.layers = nn.ModuleList([IBS2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)]) |
|
|
|
self.gradient_checkpointing = False |
|
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self._register_load_state_dict_pre_hook(self.load_hook) |
|
self.post_init() |
|
|
|
def load_hook(self, state_dict, prefix, *args): |
|
for k in state_dict: |
|
if "embedding." in k: |
|
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k) |
|
break |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.embeddings = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=Mamba2Output, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
cache_params: Optional[Mamba2Cache] = None, |
|
use_cache: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[Tuple, Mamba2Output]: |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embeddings(input_ids) |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
use_cache = False |
|
|
|
if use_cache: |
|
if cache_params is None: |
|
cache_params = Mamba2Cache( |
|
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype |
|
) |
|
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device) |
|
elif cache_position is None: |
|
|
|
|
|
|
|
raise ValueError( |
|
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, " |
|
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will " |
|
"be initialized for you automatically" |
|
) |
|
else: |
|
cache_params = None |
|
|
|
hidden_states = inputs_embeds |
|
all_hidden_states = () if output_hidden_states else None |
|
for mixer_block in self.layers: |
|
if self.gradient_checkpointing and self.training: |
|
hidden_states = self._gradient_checkpointing_func( |
|
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask |
|
) |
|
else: |
|
hidden_states = mixer_block( |
|
hidden_states, |
|
cache_params=cache_params, |
|
cache_position=cache_position, |
|
attention_mask=attention_mask, |
|
) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
hidden_states = self.norm_f(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None) |
|
|
|
return Mamba2Output( |
|
last_hidden_state=hidden_states, |
|
cache_params=cache_params if use_cache else None, |
|
hidden_states=all_hidden_states, |
|
) |
|
|
|
class IBS2ForClassification(Mamba2PreTrainedModel): |
|
_tied_weights_keys = [] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.backbone = IBS2Model(config) |
|
self.cls_head = nn.Linear(config.hidden_size, config.num_classes, bias=False) |
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
cache_params: Optional[Mamba2Cache] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
cache_position: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
): |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
mamba2_outputs = self.backbone( |
|
input_ids, |
|
cache_params=cache_params, |
|
inputs_embeds=inputs_embeds, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
attention_mask=attention_mask, |
|
) |
|
hidden_states = mamba2_outputs[0] |
|
|
|
logits = self.cls_head(hidden_states.to(self.cls_head.weight.dtype)).float() |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + mamba2_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The MAMBA2 Model transformer with a language modeling head on top (linear layer with weights not tied to the input |
|
embeddings). |
|
""", |
|
MAMBA2_START_DOCSTRING, |
|
) |
|
class IBS2ForCausalLM(Mamba2PreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = [] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.backbone = IBS2Model(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def get_input_embeddings(self): |
|
return self.backbone.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
return self.backbone.set_input_embeddings(new_embeddings) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
inputs_embeds=None, |
|
use_cache=None, |
|
cache_params: Optional[Mamba2Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
): |
|
|
|
|
|
if use_cache: |
|
|
|
if cache_position is None: |
|
raise ValueError( |
|
"`cache_position` should not be None as it should have been initialized in " |
|
"`model.generate`, you are responsible for passing in a valid `cache_position` if " |
|
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`" |
|
) |
|
if cache_position[0] > 0: |
|
input_ids = input_ids[:, -1][..., None] |
|
|
|
if attention_mask is not None: |
|
attention_mask = None |
|
else: |
|
|
|
|
|
|
|
|
|
cache_position = torch.arange(0, self.config.conv_kernel, device=input_ids.device) |
|
|
|
if inputs_embeds is not None and cache_params is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"attention_mask": attention_mask, |
|
"cache_params": cache_params, |
|
"use_cache": use_cache, |
|
"cache_position": cache_position, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=Mamba2CausalLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
cache_params: Optional[Mamba2Cache] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
cache_position: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[Tuple, Mamba2CausalLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
mamba2_outputs = self.backbone( |
|
input_ids, |
|
cache_params=cache_params, |
|
inputs_embeds=inputs_embeds, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
attention_mask=attention_mask, |
|
) |
|
hidden_states = mamba2_outputs[0] |
|
|
|
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(logits.device) |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + mamba2_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Mamba2CausalLMOutput( |
|
loss=loss, |
|
logits=logits, |
|
cache_params=mamba2_outputs.cache_params, |
|
hidden_states=mamba2_outputs.hidden_states, |
|
) |
|
|
|
|
|
__all__ = ["IBS2ForCausalLM", "IBS2Model", "Mamba2PreTrainedModel", "IBS2Block", "IBS2ForClassification"] |
|
|
|
|