File size: 65,777 Bytes
b710f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
# coding=utf-8
# Copyright 2024 state-spaces/mamba2 org and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MAMBA2 model."""

import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss

from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
)
from transformers.utils.import_utils import is_causal_conv1d_available, is_torch_available, _is_package_available, version
from .configuration_ibs2 import IBS2Config

def is_mamba_2_ssm_available():
    if is_torch_available():
        import torch

        if not torch.cuda.is_available():
            return False
        else:
            if _is_package_available("mamba_ssm"):
                import mamba_ssm

                if version.parse(mamba_ssm.__version__) >= version.parse("2.0.4"):
                    return True
    return False

logger = logging.get_logger(__name__)


if is_mamba_2_ssm_available():
    from mamba_ssm.ops.triton.selective_state_update import selective_state_update
    from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
else:
    mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, selective_state_update = None, None, None

if is_causal_conv1d_available():
    from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
    causal_conv1d_update, causal_conv1d_fn = None, None

is_fast_path_available = all(
    (
        selective_state_update,
        mamba_chunk_scan_combined,
        mamba_split_conv1d_scan_combined,
        causal_conv1d_fn,
        causal_conv1d_update,
    )
)

_CHECKPOINT_FOR_DOC = "mistralai/mamba-codestral-7B-v0.1"
_CONFIG_FOR_DOC = "Mamba2Config"


# Helper methods for segment sum computation


def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
    """
    Padding x tensor with `pad_size` on the seq_len dim (dim=1)

    Assumes that we only have tensors of either size 4 or 3
    """
    pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)

    return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)


def reshape_into_chunks(input_tensor, pad_size, chunk_size):
    """
    Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
    simultaneously splitting it into chunk sequences.

    Assumes that we only have tensors of either size 4 or 3
    """
    # [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
    input_tensor = pad_tensor_by_size(input_tensor, pad_size)

    if len(input_tensor.shape) == 3:
        # [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
        return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
    else:
        # [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
        return input_tensor.reshape(
            input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
        )


def segment_sum(input_tensor):
    """
    More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
    """
    chunk_size = input_tensor.size(-1)
    # 1. expand input tensor to have an additional dimension and repeat along that dimension
    # [..., chunk_size] -> [..., chunk_size, chunk_size]
    input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
    # 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
    mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
    input_tensor = input_tensor.masked_fill(~mask, 0)
    # 3. compute actual cumsum
    tensor_segsum = torch.cumsum(input_tensor, dim=-2)

    # 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
    mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
    tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
    return tensor_segsum


def apply_mask_to_padding_states(hidden_states, attention_mask):
    """
    Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66
    """
    if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
        dtype = hidden_states.dtype
        hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)

    return hidden_states


class Mamba2Cache:
    """
    Arguments:
        config: Mamba2Config
        batch_size: int
        dtype: torch.dtype
        device: torch.device

    Attributes:
        dtype: (`torch.dtype`):
            The default `dtype` used to initializing the cache.
        conv_kernel_size: (`int`):
            Model's convolution kernel size taken from config.
        n_groups: (`int`):
            Model's number of groups taken from the config - similar to tensor parallel in Transformer.
        state_size: (`int`):
            Model's SSM state size taken from config.
        num_heads: (`int`):
            The number of heads used in the linear attention / SSM.
        head_dim: (`int`):
            The respective dimension of the heads used in the linear attention / SSM.
        intermediate_size: (`int`):
            Model's intermediate_size based on (expand * hidden_dim) from config.
        conv_states: (`torch.Tensor`):
            A tensor of shape `[num_layers, batch_size, conv_kernel_size, intermediate_size + 2 * n_groups * state_size]` that holds convolutional states.
        ssm_states: (`torch.Tensor`):
            A tensor of shape `[num_layers, batch_size, num_heads, head_dim, state_size]` that holds ssm states.
    """

    def __init__(
        self, config: IBS2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
    ):
        self.dtype = dtype
        self.conv_kernel_size = config.conv_kernel
        self.n_groups = config.n_groups
        self.state_size = config.state_size
        self.num_heads = config.num_heads
        self.head_dim = config.head_dim
        self.intermediate_size = int(config.expand * config.hidden_size)

        self.conv_states = torch.zeros(
            config.num_hidden_layers,
            batch_size,
            self.intermediate_size + 2 * self.n_groups * self.state_size,
            self.conv_kernel_size,
            device=device,
            dtype=dtype,
        )
        self.ssm_states = torch.zeros(
            config.num_hidden_layers,
            batch_size,
            self.num_heads,
            self.head_dim,
            self.state_size,
            device=device,
            dtype=dtype,
        )

    def update_conv_state(
        self, layer_idx: int, new_conv_state: torch.Tensor, cache_init: bool = False
    ) -> torch.Tensor:
        if cache_init:
            self.conv_states[layer_idx] = new_conv_state.to(self.conv_states.device)
        else:
            self.conv_states[layer_idx] = self.conv_states[layer_idx].roll(shifts=-1, dims=-1)
            self.conv_states[layer_idx][:, :, -1] = new_conv_state[:, 0, :].to(self.conv_states.device)
        return self.conv_states[layer_idx]

    def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor):
        self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device)
        return self.ssm_states[layer_idx]

    def reset(self):
        self.conv_states.zero_()
        self.ssm_states.zero_()


class MambaRMSNormGated(torch.nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states, gate=None):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)

        if gate is not None:
            hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32))
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)

        return self.weight * hidden_states.to(input_dtype)

class Normalize(nn.Module):
    def __init__(self, min_value=None, max_value=None):
        super().__init__()
        self.min_value = min_value
        self.max_value = max_value

    def forward(self, value_states):
        # 计算 value_states 的最小值和最大值
        min_val = value_states.min(dim=-1, keepdim=True).values
        max_val = value_states.max(dim=-1, keepdim=True).values
        
        # 如果 min_value 或 max_value 是 None,则使用另一个值进行归一化
        if self.min_value is None and self.max_value is not None:
            # 只使用 max_value 进行归一化
            scale_factor = self.max_value / (max_val + 1e-6)
            return value_states * scale_factor, scale_factor, None
        elif self.max_value is None and self.min_value is not None:
            # 只使用 min_value 进行归一化
            scale_factor = self.min_value / (min_val + 1e-6)
            return value_states * scale_factor, scale_factor, None
        elif self.min_value is not None and self.max_value is not None:
            # 同时使用 min_value 和 max_value 进行归一化
            scale_factor = (self.max_value - self.min_value) / (max_val - min_val + 1e-6)
            shift_factor = self.min_value - min_val * scale_factor
            normalized_value_states = value_states * scale_factor + shift_factor
            return normalized_value_states, scale_factor, shift_factor
        else:
            # 如果 min_value 和 max_value 都是 None,则不进行归一化
            return value_states, None, None


# torch.lgamma(n) - torch.lgamma(theta) + (theta - n) * torch.special.digamma(theta)
class GammaIB(nn.Module):
    def __init__(self, hidden_size, alphas=None, return_attn=False, **kwargs) -> None:
        super().__init__()
        self.alphas = alphas
        # self.attributor = nn.Linear(hidden_size, 1)
        self.hidden_size = hidden_size
        self._auxiliary_loss = 0
        self.epoch_frac = 0
        self.epoch_threshold = -1
        self.normalizer = Normalize(max_value=10, min_value=0.1)
        self.return_attn = return_attn
        self._attn = None



    def get_auxiliary_loss(self):
        loss = self._auxiliary_loss
        self._auxiliary_loss = 0.0
        # print("auxiliary_loss", loss)
        return loss

    def init_alphas(self, param_alphas):
        # shape: [bsz, seq_len, 1]
        if self.alphas is None:
            maxmimum = 8
        else:
            maxmimum = param_alphas.size(1) / self.alphas.size(0) * self.alphas.max().item()
        length = param_alphas.shape[1]
        alphas = torch.linspace(maxmimum, 1, steps=length).float().to(param_alphas.device) # distance-decay: torch.linspace(1, 2, steps=length)
        self.alphas = alphas

    def compute_loss(self, param_alphas, epsilon=1e-6):
        if self.alphas is None:
            self.init_alphas(param_alphas)  # length is the second dimension of att
            print(f"Gamma prior alpha first: {self.alphas[0]}, last: {self.alphas[-1]}, size: {self.alphas.size(0)}", )
        if self.alphas.size(0) != param_alphas.size(1):
            self.init_alphas(param_alphas)  # length is the second dimension of att
            print(f"Gamma prior alpha first: {self.alphas[0]}, last: {self.alphas[-1]}, size: {self.alphas.size(0)}", )
        
        params = self.alphas.unsqueeze(-1).expand(param_alphas.shape)
        reg_loss = (torch.lgamma(self.alphas) - torch.lgamma(params) + (params - self.alphas) * torch.digamma(params)).mean()
        
        return reg_loss

    def forward(self, states):
        # hidden_states shape [bsz, seq_length, dimension]
        hidden_states, alphas = torch.split(
                    states,
                    [self.hidden_size, 1],
                    dim=-1
                )
        if self.epoch_frac < self.epoch_threshold:
            return hidden_states
        # alphas = F.rms_norm(alphas, [hidden_states.shape[1], 1])
        #! HACK: for finetuning we zero-init and reparametrize to ensure the initialization is one
        alphas = nn.functional.softplus(alphas) - torch.log(torch.tensor(2.0)) + torch.tensor(1.0)
        # if self.return_attn:
        #     # print(alphas.shape)
        #     if alphas.shape[-2] == 1:
        #         pass # seqlen == 1 indicates it is caching
        #     else:
        #         self._attn = alphas.detach().cpu()

        shaped_alphas = alphas.expand(-1, -1, hidden_states.shape[2])
        if self.training:
            self._auxiliary_loss = self.compute_loss(alphas)
            value_states = hidden_states.abs()  # ensure value_states is positive
            normalized_value_states, scale_factor, shift_factor = self.normalizer(value_states)

            betas = torch.reciprocal(normalized_value_states)
            sign_states = torch.sign(hidden_states)
            gamma_dist = torch.distributions.gamma.Gamma(shaped_alphas, betas)
            samples = gamma_dist.rsample()
            # Restore the original scale
            if shift_factor is not None:
                time_states = samples * sign_states / scale_factor - shift_factor / scale_factor
            else:
                time_states = samples * sign_states / scale_factor
        else:
            time_states = shaped_alphas * hidden_states # directly use the expectation
        
        if self.return_attn:
            # print(alphas.shape)
            if time_states.shape[-2] == 1:
                pass # seqlen == 1 indicates it is caching
            else:
                self._attn = torch.exp(-time_states).mean(dim=-1).detach().cpu()

        return time_states

class BernoulliIB(nn.Module):
    def __init__(self, hidden_size, temp=1, thetas=None, max_seqlen=1024, return_attn=False, **kwargs) -> None:
        super().__init__()
        self.epoch_frac = 0
        self.epoch_threshold = 0
        self.temp = temp
        self.thetas = thetas
        self.hidden_size = hidden_size
        # self.attributor = nn.Linear(hidden_size, 1, bias=True)
        self._auxiliary_loss = 0
        self.max_seqlen = 4096
        self.return_attn = return_attn
        self._attn = None

    def init_thetas(self, attn):
        # Create a tensor with sequence positions [0, 1, ..., length-1]
        # length = attn.shape[1]
        seq_len = attn.shape[1]
        if seq_len <= self.max_seqlen:
            positions = torch.arange(self.max_seqlen).float().to(attn.device)
        else:
            positions = torch.arange(self.max_seqlen - seq_len, self.max_seqlen).float().to(attn.device)
        
        # Define the exponential decay function
        # decay_factor = 0.3 + 0.4 * torch.exp(positions / length - 1) # extrapolable distance-decay (-\infty: 0.3, 0: 0.5, length: 0.7)
        decay_factor = 0.8 - 0.6 * torch.exp(positions / self.max_seqlen - 1) # extrapolable distance-balance (-\infty: 0.7, 0: 0.5, length: 0.3)
        
        # Make the decay factor repeat across the batch dimension
        self.thetas = decay_factor
        return decay_factor

    # def get_token_saliency(self):
    #     attn = self._attn
    #     self._attn = None
    #     return attn

    def get_auxiliary_loss(self):
        loss = self._auxiliary_loss
        self._auxiliary_loss = 0.0
        return loss

    def compute_loss(self, att, epsilon=1e-6):
        if self.thetas is None:
            thetas = self.init_thetas(att)  # length is the second dimension of att
            print(f"Bernoulli prior theta first: {self.thetas[0]:.2f}, last: {self.thetas[-1]:.2f}, size: {self.thetas.size(0)}")

        if self.thetas.size(0) >= att.size(1):
            thetas = self.thetas[-att.size(1):]
        elif self.thetas.size(0) < att.size(1):
            thetas = self.init_thetas(att)
            print(f"Bernoulli prior theta first: {self.thetas[0]:.2f}, last: {self.thetas[-1]:.2f}, size: {self.thetas.size(0)}")
        
        thetas = thetas.unsqueeze(-1).expand(att.shape)
        # Calculate the regularization loss
        reg_loss = (att * torch.log(att / thetas + epsilon) +
                    (1 - att) * torch.log((1 - att) / (1 - thetas + epsilon) + epsilon)).mean()
        
        return reg_loss

    def forward(self, states):
        # hidden_states shape [bsz, seq_length, dimension]
        hidden_states, attn = torch.split(
                    states,
                    [self.hidden_size, 1],
                    dim=-1
                )
        # attn = self.attributor(hidden_states)
        #! HACK: for fintuning, we zero-init and re-paramerize as plus 1
        attn = attn + torch.tensor(1.0)
        if self.epoch_frac < self.epoch_threshold:
            return hidden_states
        if self.training:
            # gumble soft-max
            random_noise = torch.empty_like(attn).uniform_(1e-10, 1 - 1e-10)
            random_noise = torch.log(random_noise) - torch.log(1.0 - random_noise)
            attn_bern = ((attn + random_noise) / self.temp).sigmoid()
        else:
            attn_bern = (attn).sigmoid()
        self._auxiliary_loss = self.compute_loss(attn_bern)
        if self.return_attn:
            if attn_bern.shape[-2] == 1:
                pass # seqlen == 1 indicates it is caching
            else:
                self._attn = attn_bern.detach().cpu()
        return hidden_states * attn_bern


class Mamba2Mixer(nn.Module):
    """
    Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
    A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
    ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
    and is why Mamba is called **selective** state spaces)
    """

    def __init__(self, config: IBS2Config, layer_idx: int):
        super().__init__()
        self.num_heads = config.num_heads
        self.hidden_size = config.hidden_size
        self.ssm_state_size = config.state_size
        self.conv_kernel_size = config.conv_kernel
        self.intermediate_size = int(config.expand * self.hidden_size)
        self.time_step_rank = int(config.time_step_rank)
        self.layer_idx = layer_idx
        self.use_conv_bias = config.use_conv_bias
        self.activation = config.hidden_act
        self.act = ACT2FN[config.hidden_act]

        self.layer_norm_epsilon = config.layer_norm_epsilon
        self.rms_norm = config.rms_norm

        self.n_groups = config.n_groups
        self.head_dim = config.head_dim
        self.chunk_size = config.chunk_size

        self.time_step_limit = config.time_step_limit
        self.time_step_min = config.time_step_min
        self.time_step_max = config.time_step_max

        self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
        self.conv1d = nn.Conv1d(
            in_channels=self.conv_dim,
            out_channels=self.conv_dim,
            bias=config.use_conv_bias,
            kernel_size=config.conv_kernel,
            groups=self.conv_dim,
            padding=config.conv_kernel - 1,
        )

        # projection of the input hidden states
        #! HACK ib_dim
        self._attn = None
        self.return_attn = config.return_attn
        assert config.ib_type in ['bernoulli', 'gamma'], "Invalid IB Prior."
        IB_cls = BernoulliIB if config.ib_type == 'bernoulli' else GammaIB if config.ib_type == 'gamma' else None
        self.ib4dt = IB_cls(self.num_heads, return_attn=config.return_attn) if self.layer_idx in [0, 31, 63] else None

        self.ib_proj = nn.Linear(
            self.hidden_size,
            1,
            bias=False,
        ) if self.ib4dt else None
        projection_size = self.intermediate_size + self.conv_dim + self.num_heads
        self.in_proj = nn.Linear(
            self.hidden_size,
            projection_size,
            bias=config.use_bias,
        )
        # selective projection used to make dt, B and C input dependant

        # time step projection (discretization)
        # instantiate once and copy inv_dt in init_weights of PretrainedModel
        self.dt_bias = nn.Parameter(torch.ones(self.num_heads))

        # S4D real initialization. These are not discretized!
        # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
        A = torch.arange(1, self.num_heads + 1)
        self.A_log = nn.Parameter(torch.log(A))
        self.A_log._no_weight_decay = True
        self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
        self.D = nn.Parameter(torch.ones(self.num_heads))
        self.D._no_weight_decay = True

        self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
        self.use_bias = config.use_bias

        if not is_fast_path_available:
            logger.warning_once(
                "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
                " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
                " https://github.com/Dao-AILab/causal-conv1d"
            )

    def get_token_saliency(self):
        attn = self._attn
        self._attn = None
        return attn

    def cuda_kernels_forward(
        self,
        hidden_states: torch.Tensor,
        cache_params: Optional[Mamba2Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        # 1. Gated MLP's linear projection
        hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask)
        projected_states = self.in_proj(hidden_states)

        #! HACK IBS apply
        if self.ib4dt:
            ib_state = self.ib_proj(hidden_states)
            dim = self.head_dim * self.num_heads 
            zx, BC, dt = torch.split(projected_states, [dim * 2, + self.n_groups * self.ssm_state_size * 2, self.num_heads], dim=-1)
            dt = self.ib4dt(torch.cat([dt, ib_state], dim=-1))
            projected_states = torch.cat([zx, BC, dt], dim=-1)
            if self.return_attn and dt.shape[-2] != 1:
                dt_plus = nn.functional.softplus(dt + self.dt_bias)
                dA = (dt_plus * (-torch.exp(self.A_log.float())))
                # dA = torch.exp(dA)
                attn = dA.mean(dim=-1) # - 0.1 * dA.std(dim=-1) # attn shape [batch_size, seqlen]
                self._attn = attn

        # Set up dimensions for reshapes later
        batch_size, seq_len, _ = hidden_states.shape
        groups_time_state_size = self.n_groups * self.ssm_state_size
        d_mlp = (
            projected_states.shape[-1]
            - 2 * self.intermediate_size
            - 2 * self.n_groups * self.ssm_state_size
            - self.num_heads
        ) // 2

        # Single step calculations via cache
        if cache_params is not None and cache_position is not None and cache_position[0] > 0:
            _, _, gate, hidden_states_B_C, dt = projected_states.squeeze(1).split(
                [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
            )

            # 2. Convolution sequence transformation
            hidden_states_B_C = causal_conv1d_update(
                hidden_states_B_C,
                cache_params.conv_states[self.layer_idx],
                self.conv1d.weight.squeeze(1),
                self.conv1d.bias,
                self.activation,
            )

            hidden_states, B, C = torch.split(
                hidden_states_B_C,
                [self.intermediate_size, groups_time_state_size, groups_time_state_size],
                dim=-1,
            )

            # 3. SSM transformation
            A = -torch.exp(self.A_log.float())  # (nheads,)
            A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
            dt = dt[:, :, None].expand(-1, -1, self.head_dim)
            dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
            D = self.D[:, None, ...].expand(-1, self.head_dim)
            B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
            C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
            hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
            hidden_states = selective_state_update(
                cache_params.ssm_states[self.layer_idx],
                hidden_states_reshaped,
                dt,
                A,
                B,
                C,
                D,
                z=None,
                dt_bias=dt_bias,
                dt_softplus=True,
            )
            hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
            hidden_states = self.norm(hidden_states, gate)

            # 4. Final linear projection
            out = self.out_proj(hidden_states)[:, None, ...]

        # Fused calculations or step by step if no initialized cache is found
        else:
            A = -torch.exp(self.A_log.float())  # (num_heads) or (intermediate_size, state_size)
            dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}

            # 2-4. Fused kernel for conv1d, SSM, and the final projection
            if self.training and cache_params is None:
                out = mamba_split_conv1d_scan_combined(
                    projected_states,
                    self.conv1d.weight.squeeze(1),
                    self.conv1d.bias,
                    self.dt_bias,
                    A,
                    D=self.D,
                    chunk_size=self.chunk_size,
                    seq_idx=None,  # was seq_idx
                    activation=self.activation,
                    rmsnorm_weight=self.norm.weight,
                    rmsnorm_eps=self.norm.variance_epsilon,
                    outproj_weight=self.out_proj.weight,
                    outproj_bias=self.out_proj.bias,
                    headdim=self.head_dim,
                    ngroups=self.n_groups,
                    norm_before_gate=False,
                    return_final_states=False,
                    **dt_limit_kwargs,
                )

            else:
                _, _, gate, hidden_states_B_C, dt = projected_states.split(
                    [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
                )

                # 2. Convolution sequence transformation
                # Init cache
                if cache_params is not None:
                    hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
                    conv_states = nn.functional.pad(
                        hidden_states_B_C_transposed,
                        (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0),
                    )
                    cache_params.update_conv_state(
                        layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True
                    )

                if self.activation not in ["silu", "swish"]:
                    hidden_states_B_C = self.act(
                        self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)
                    )
                else:
                    hidden_states_B_C = causal_conv1d_fn(
                        x=hidden_states_B_C.transpose(1, 2),
                        weight=self.conv1d.weight.squeeze(1),
                        bias=self.conv1d.bias,
                        activation=self.activation,
                    ).transpose(1, 2)

                hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
                hidden_states, B, C = torch.split(
                    hidden_states_B_C,
                    [self.intermediate_size, groups_time_state_size, groups_time_state_size],
                    dim=-1,
                )

                # 3. SSM transformation
                scan_output, ssm_state = mamba_chunk_scan_combined(
                    hidden_states.view(batch_size, seq_len, -1, self.head_dim),
                    dt,
                    A,
                    B.view(batch_size, seq_len, self.n_groups, -1),
                    C.view(batch_size, seq_len, self.n_groups, -1),
                    chunk_size=self.chunk_size,
                    D=self.D,
                    z=None,
                    seq_idx=None,
                    return_final_states=True,
                    dt_bias=self.dt_bias,
                    dt_softplus=True,
                    **dt_limit_kwargs,
                )

                # Init cache
                if ssm_state is not None and cache_params is not None:
                    cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state)

                scan_output = scan_output.view(batch_size, seq_len, -1)
                # Multiply "gate" branch and apply extra normalization layer
                scan_output = self.norm(scan_output, gate)

                # 4. Final linear projection
                out = self.out_proj(scan_output)
        return out

    # fmt: off
    def torch_forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
        batch_size, seq_len, _ = input_states.shape
        dtype = input_states.dtype

        # 1. Gated MLP's linear projection
        input_states = apply_mask_to_padding_states(input_states, attention_mask)
        projected_states = self.in_proj(input_states)
        
        if self.ib4dt:
            attn = self.ib_proj(input_states)
            dim = self.head_dim * self.num_heads 
            zx, BC, dt = torch.split(projected_states, [dim * 2, + self.n_groups * self.ssm_state_size * 2, self.num_heads], dim=-1)
            dt = self.ib4dt(torch.cat([dt, attn], dim=-1))
            projected_states = torch.cat([zx, BC, dt], dim=-1)

        d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size-self.num_heads) // 2
        _, _, gate, hidden_states_B_C, dt = projected_states.split(
                [d_mlp, d_mlp, self.intermediate_size,  self.conv_dim, self.num_heads], dim=-1
        )

        # 2. Convolution sequence transformation
        if cache_params is not None and cache_position is not None and cache_position[0] > 0:
            cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=hidden_states_B_C, cache_init=False)

            # We need to guarantee that anything regarding the cache is on the same device
            conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device)

            hidden_states_B_C = torch.sum(
                conv_states * self.conv1d.weight.squeeze(1), dim=-1
            )
            if self.use_conv_bias:
                hidden_states_B_C = hidden_states_B_C + self.conv1d.bias
            hidden_states_B_C = self.act(hidden_states_B_C)
        else:
            # Init cache
            if cache_params is not None:
                hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
                conv_states = nn.functional.pad(
                    hidden_states_B_C_transposed, (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0)
                )
                cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True)

            hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2))

        hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
        hidden_states, B, C = torch.split(
            hidden_states_B_C,
            [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size],
            dim=-1
        )

        # 3. SSM transformation
        A = -torch.exp(self.A_log.float())                            # [num_heads]
        if cache_params is not None and cache_position is not None and cache_position[0] > 0:
            # We need to guarantee that anything regarding the cache is on the same device
            cache_device = cache_params.ssm_states.device

            # Note: there is no need to pad parameter matrices here, as there is just one new token
            # for batched generation
            dt = dt[:, 0, :][:, None, ...]
            dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
            # [num_heads] -> [num_heads, head_dim]
            dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)

            dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
            dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
            A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
            # [bsz, num_heads, head_dim, state_size]
            dA = (torch.exp(dt[..., None] * A)).to(device=cache_device)

            # Discretize B
            # [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
            # -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
            B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
            B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
            B = B.reshape(batch_size, -1, B.shape[-1])
            # [bsz, num_heads, head_dim, state_size]
            dB = dt[..., None] * B[..., None, :]

            # Discretize x into dB
            # [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
            hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
            dBx = (dB * hidden_states[..., None]).to(device=cache_device)

            # State calculation
            cache_params.update_ssm_state(
                layer_idx=self.layer_idx,
                new_ssm_state=cache_params.ssm_states[self.layer_idx] * dA + dBx
            )

            # Subsequent output
            # [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
            C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
            C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
            C = C.reshape(batch_size, -1, C.shape[-1])
            # [bsz, num_heads, head_dim]

            ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype)  # Shape: [b, h, d, n]
            # Reshape ssm_states to merge the first two dimensions
            ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size)  # Shape: [b*h, d, n]
            C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1)  # Shape: [b*h, n, 1]
            y = torch.bmm(ssm_states_reshaped, C_reshaped)
            y = y.view(batch_size, self.num_heads, self.head_dim)

            # D skip connection
            # [num_heads] -> [num_heads, head_dim]
            D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
            y = (y + hidden_states * D).to(y.dtype)

            # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
            y = y.reshape(batch_size, -1)[:, None, ...]
        else:
            # begin ssd naive implementation without einsums
            dt = nn.functional.softplus(dt + self.dt_bias)
            dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
            hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
            B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
            C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
            B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
            C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
            pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size

            D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)

            # Discretize x and A
            hidden_states = hidden_states * dt[..., None]
            A = A.to(hidden_states.dtype) * dt

            # Rearrange into blocks/chunks
            hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]

            # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
            A = A.permute(0, 3, 1, 2)
            A_cumsum = torch.cumsum(A, dim=-1)

            # 1. Compute the output for each intra-chunk (diagonal blocks)
            # This is the analog of a causal mask
            L = torch.exp(segment_sum(A))

            # Contraction of C and B to get G (attention-weights like)
            G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :]  # shape: (b, c, l, s, h, n)
            G = G_intermediate.sum(dim=-1)  # shape: (b, c, l, s, h)

            # Compute M, equivalent to applying attention mask to weights
            M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
            M = M_intermediate.sum(dim=-1)

            # Compute Y_diag (apply to values)
            Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3)

            # 2. Compute the state for each intra-chunk
            # (right term of low-rank factorization of off-diagonal blocks; B terms)
            decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
            B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None]
            states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2)

            # 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
            # (middle term of factorization of off-diag blocks; A terms)
            if cache_params is not None and cache_position is not None and cache_position[0] > 0:
                previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device)
            else:
                previous_states = torch.zeros_like(states[:, :1])
            states = torch.cat([previous_states, states], dim=1)
            decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
            decay_chunk = decay_chunk.transpose(1, 3)
            new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1)
            states, ssm_state = new_states[:, :-1], new_states[:, -1]

            # 4. Compute state -> output conversion per chunk
            # (left term of low-rank factorization of off-diagonal blocks; C terms)
            state_decay_out = torch.exp(A_cumsum)
            C_times_states = (C[..., None, :] * states[:, :, None, ...])
            state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
            Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])

            # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
            y = Y_diag + Y_off
            # [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
            y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)

            y = y + D_residual
            # Cutting off padded chunks
            if pad_size > 0:
                y = y[:, :seq_len, :, :]
            y = y.reshape(batch_size, seq_len, -1)

            # Init cache
            if ssm_state is not None and cache_params is not None:
                cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state)

        scan_output = self.norm(y, gate)

        # end ssd naive

        # 4. Final linear projection
        contextualized_states = self.out_proj(scan_output.to(dtype))  # [batch, seq_len, hidden_size]
        return contextualized_states
    # fmt: on

    def forward(
        self,
        hidden_states,
        cache_params: Optional[Mamba2Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
            return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
        dtype = hidden_states.dtype
        if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
            # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
            hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)

        return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)


class Mamba2RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


class IBS2Block(nn.Module):
    def __init__(self, config, layer_idx):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.residual_in_fp32 = config.residual_in_fp32
        self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
        self.mixer = Mamba2Mixer(config, layer_idx=layer_idx)

    def forward(
        self,
        hidden_states,
        cache_params: Optional[Mamba2Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        residual = hidden_states
        hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
        if self.residual_in_fp32:
            residual = residual.to(torch.float32)

        hidden_states = self.mixer(
            hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
        )
        hidden_states = residual + hidden_states
        return hidden_states


class Mamba2PreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = IBS2Config
    base_model_prefix = "backbone"
    _no_split_modules = ["Mamba2Block"]
    supports_gradient_checkpointing = True
    _is_stateful = True

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, Mamba2Mixer):
            #! HACK
            if getattr(module, "ib_proj"):
                nn.init.zeros_(module.ib_proj.weight)

            module.A_log._no_weight_decay = True
            module.D._no_weight_decay = True

            dt = torch.exp(
                torch.rand(self.config.num_heads)
                * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
                + math.log(self.config.time_step_min)
            ).clamp(min=self.config.time_step_floor)

            # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
            inv_dt = dt + torch.log(-torch.expm1(-dt))
            with torch.no_grad():
                module.dt_bias.copy_(inv_dt)
            module.dt_bias._no_reinit = True

        if isinstance(module, nn.Linear):
            if module.bias is not None:
                if not getattr(module.bias, "_no_reinit", False):
                    nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, std=self.config.initializer_range)

        if self.config.rescale_prenorm_residual:
            # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
            #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
            #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
            #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
            #
            # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
            for name, p in module.named_parameters():
                if name in ["out_proj.weight"]:
                    # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                    # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
                    # We need to reinit p since this code could be called multiple times
                    # Having just p *= scale would repeatedly scale it down
                    nn.init.kaiming_uniform_(p, a=math.sqrt(5))
                    with torch.no_grad():
                        p /= math.sqrt(self.config.num_hidden_layers)


@dataclass
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2
class Mamba2Output(ModelOutput):
    """
    Class for the MAMBA2 model outputs.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        cache_params (`Mamba2Cache`):
            The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
            avoid providing the old `input_ids`.

            Includes both the State space model state matrices after the selective scan, and the Convolutional states
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
    """

    last_hidden_state: Optional[torch.FloatTensor] = None
    cache_params: Optional[Mamba2Cache] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2
class Mamba2CausalLMOutput(ModelOutput):
    """
    Base class for causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        cache_params (`Mamba2Cache`):
            The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
            avoid providing the old `input_ids`.

            Includes both the State space model state matrices after the selective scan, and the Convolutional states
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None
    cache_params: Optional[Mamba2Cache] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None


MAMBA2_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`Mamba2Config`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

MAMBA2_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
            Indices of input sequence tokens in the vocabulary.

            If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
            `input_ids`.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        cache_params (`Mamba2Cache`, *optional*):
            If passed along, the model uses the previous state in all the blocks (which will give the output for the
            `input_ids` provided as if the model add `state_input_ids + input_ids` as context).
        use_cache (`bool`, *optional*):
            If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            The position of the current input in the cache. This is used to ensure that the cache is correctly updated.
            If `cache_params` is passed, `cache_position` should also be passed.
        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
"""


@add_start_docstrings(
    "The bare MAMBA2 Model transformer outputting raw hidden-states without any specific head on top.",
    MAMBA2_START_DOCSTRING,
)
class IBS2Model(Mamba2PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([IBS2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])

        self.gradient_checkpointing = False
        self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
        # Initialize weights and apply final processing
        self._register_load_state_dict_pre_hook(self.load_hook)
        self.post_init()

    def load_hook(self, state_dict, prefix, *args):
        for k in state_dict:
            if "embedding." in k:
                state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
                break

    def get_input_embeddings(self):
        return self.embeddings

    def set_input_embeddings(self, new_embeddings):
        self.embeddings = new_embeddings

    @add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=Mamba2Output,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.LongTensor] = None,
        cache_params: Optional[Mamba2Cache] = None,
        use_cache: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[Tuple, Mamba2Output]:
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):  # ^ is python for xor
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embeddings(input_ids)

        if self.gradient_checkpointing and self.training and use_cache:
            use_cache = False

        if use_cache:
            if cache_params is None:
                cache_params = Mamba2Cache(
                    self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
                )
                cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
            elif cache_position is None:
                # cases when we do manual forward instead of using `model.generate` which will initiate
                # `cache_position` and makes sure it is not None, throw error here instead of doing some
                # hack to conjecture the current cache position
                raise ValueError(
                    "You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
                    "you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
                    "be initialized for you automatically"
                )
        else:
            cache_params = None

        hidden_states = inputs_embeds
        all_hidden_states = () if output_hidden_states else None
        for mixer_block in self.layers:
            if self.gradient_checkpointing and self.training:
                hidden_states = self._gradient_checkpointing_func(
                    mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
                )
            else:
                hidden_states = mixer_block(
                    hidden_states,
                    cache_params=cache_params,
                    cache_position=cache_position,
                    attention_mask=attention_mask,
                )

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

        hidden_states = self.norm_f(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)

        return Mamba2Output(
            last_hidden_state=hidden_states,
            cache_params=cache_params if use_cache else None,
            hidden_states=all_hidden_states,
        )

class IBS2ForClassification(Mamba2PreTrainedModel):
    _tied_weights_keys = []

    def __init__(self, config):
        super().__init__(config)
        self.backbone = IBS2Model(config)
        self.cls_head = nn.Linear(config.hidden_size, config.num_classes, bias=False)
        # Initialize weights and apply final processing
        self.post_init()
    
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        cache_params: Optional[Mamba2Cache] = None,
        labels: Optional[torch.LongTensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs,  # for now we need this for generation
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        mamba2_outputs = self.backbone(
            input_ids,
            cache_params=cache_params,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            use_cache=use_cache,
            cache_position=cache_position,
            attention_mask=attention_mask,
        )
        hidden_states = mamba2_outputs[0]

        logits = self.cls_head(hidden_states.to(self.cls_head.weight.dtype)).float()

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))

        if not return_dict:
            output = (logits,) + mamba2_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return loss
        # return Mamba2CausalLMOutput(
        #     loss=loss,
        #     logits=logits,
        #     cache_params=mamba2_outputs.cache_params,
        #     hidden_states=mamba2_outputs.hidden_states,
        # )

@add_start_docstrings(
    """
    The MAMBA2 Model transformer with a language modeling head on top (linear layer with weights not tied to the input
    embeddings).
    """,
    MAMBA2_START_DOCSTRING,
)
class IBS2ForCausalLM(Mamba2PreTrainedModel, GenerationMixin):
    _tied_weights_keys = []

    def __init__(self, config):
        super().__init__(config)
        self.backbone = IBS2Model(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def get_input_embeddings(self):
        return self.backbone.get_input_embeddings()

    def set_input_embeddings(self, new_embeddings):
        return self.backbone.set_input_embeddings(new_embeddings)

    def prepare_inputs_for_generation(
        self,
        input_ids,
        inputs_embeds=None,
        use_cache=None,
        cache_params: Optional[Mamba2Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs,
    ):
        # Overwitten -- uses `cache_params` as opposed to `past_key_values`

        if use_cache:
            # `cache_position` should have been initialized in `generate`
            if cache_position is None:
                raise ValueError(
                    "`cache_position` should not be None as it should have been initialized in "
                    "`model.generate`, you are responsible for passing in a valid `cache_position` if "
                    "you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
                )
            if cache_position[0] > 0:
                input_ids = input_ids[:, -1][..., None]

                if attention_mask is not None:
                    attention_mask = None
            else:
                # we initialize the `cache_position` to full size of `conv_states` at prefill stage
                # considering padding will be applied when input length is shorter, and truncation
                # will be applied when it is longer, so it will be equivalent to always have it match
                # the length of `cache_params.conv_states`, which is `config.conv_kernel`
                cache_position = torch.arange(0, self.config.conv_kernel, device=input_ids.device)

        if inputs_embeds is not None and cache_params is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "attention_mask": attention_mask,
                "cache_params": cache_params,
                "use_cache": use_cache,
                "cache_position": cache_position,
            }
        )
        return model_inputs

    @add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=Mamba2CausalLMOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        cache_params: Optional[Mamba2Cache] = None,
        labels: Optional[torch.LongTensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs,  # for now we need this for generation
    ) -> Union[Tuple, Mamba2CausalLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        mamba2_outputs = self.backbone(
            input_ids,
            cache_params=cache_params,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            use_cache=use_cache,
            cache_position=cache_position,
            attention_mask=attention_mask,
        )
        hidden_states = mamba2_outputs[0]

        logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (logits,) + mamba2_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return Mamba2CausalLMOutput(
            loss=loss,
            logits=logits,
            cache_params=mamba2_outputs.cache_params,
            hidden_states=mamba2_outputs.hidden_states,
        )


__all__ = ["IBS2ForCausalLM", "IBS2Model", "Mamba2PreTrainedModel", "IBS2Block", "IBS2ForClassification"]