|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MAMBA2 configuration""" |
|
|
|
import math |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class IBS2Config(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`Mamba2Model`]. It is used to instantiate a MAMBA2 |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the MAMBA2 |
|
[state-spaces/mamba2-2.8b](https://huggingface.co/state-spaces/mamba2-2.8b) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
num_heads (`int`, *optional*, defaults to 128): |
|
Number of heads for the evolution matrices of mamba 2. |
|
head_dim (`int`, *optional*, defaults to 64): |
|
Dimension of each head. |
|
vocab_size (`int`, *optional*, defaults to 32768): |
|
Vocabulary size of the MAMBA2 model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`Mamba2Model`]. |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the embeddings and hidden states. |
|
state_size (`int`, *optional*, defaults to 128): shape of the state space latents. |
|
num_hidden_layers (`int`, *optional*, defaults to 64): |
|
Number of hidden layers in the model. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): |
|
The epsilon to use in the layer normalization layers. |
|
pad_token_id (`int`, *optional*, defaults to 1): |
|
Padding token id. |
|
bos_token_id (`int`, *optional*, defaults to 0): |
|
The id of the beginning of sentence token in the vocabulary. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the end of sentence token in the vocabulary. |
|
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. |
|
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel. |
|
n_groups (`int`, *optional*, defaults to 8): |
|
Number of groups for the evolution matrices of mamba 2. |
|
use_bias (`bool`, *optional*, defaults to `False`): |
|
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block |
|
use_conv_bias (`bool`, *optional*, defaults to `True`): |
|
Whether or not to use bias in the convolution layer of the mixer block. |
|
hidden_act (`str`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
initializer_range (`float`, *optional*, defaults to 0.1): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
residual_in_fp32 (`bool`, *optional*, defaults to `True`): |
|
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model |
|
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): |
|
Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` |
|
time_step_min (`float`, *optional*, defaults to 0.001): |
|
Minimum `time_step` used to bound `dt_proj.bias`. |
|
time_step_max (`float`, *optional*, defaults to 0.1): |
|
Maximum `time_step` used to bound `dt_proj.bias`. |
|
time_step_floor (`float`, *optional*, defaults to 0.0001): |
|
Minimum clamping value of the `dt_proj.bias` layer initialization. |
|
time_step_limit (`tuple`, *optional*, defaults to `(0.0, inf)`): |
|
Accepted range of time step values. |
|
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): |
|
Whether or not to rescale `out_proj` weights when initializing. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the cache should be used. |
|
rms_norm (`bool`, *optional*, defaults to `True`): |
|
Whether to use RMS norm or not. |
|
chunk_size (`int`, *optional*, defaults to 256): |
|
Size of the chunks that will comprise the sequence. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie word embeddings or not. |
|
|
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Mamba2Config, Mamba2Model |
|
|
|
>>> # Initializing a Mamba2 configuration |
|
>>> configuration = Mamba2Config() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = Mamba2Model(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "ibs2" |
|
|
|
def __init__( |
|
self, |
|
num_classes=1, |
|
ib_type=None, |
|
return_attn=False, |
|
num_heads=128, |
|
head_dim=64, |
|
vocab_size=32768, |
|
hidden_size=4096, |
|
state_size=128, |
|
num_hidden_layers=64, |
|
layer_norm_epsilon=1e-5, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
expand=2, |
|
conv_kernel=4, |
|
n_groups=8, |
|
use_bias=False, |
|
use_conv_bias=True, |
|
hidden_act="silu", |
|
initializer_range=0.1, |
|
residual_in_fp32=True, |
|
time_step_rank="auto", |
|
time_step_min=0.001, |
|
time_step_max=0.1, |
|
time_step_floor=1e-4, |
|
time_step_limit=(0.0, float("inf")), |
|
rescale_prenorm_residual=False, |
|
use_cache=True, |
|
rms_norm=True, |
|
chunk_size=256, |
|
tie_word_embeddings=False, |
|
**kwargs, |
|
): |
|
self.num_classes = num_classes |
|
self.ib_type = ib_type |
|
self.return_attn = return_attn |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.state_size = state_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.conv_kernel = conv_kernel |
|
self.expand = expand |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.pad_token_id = pad_token_id |
|
self.use_bias = use_bias |
|
self.use_conv_bias = use_conv_bias |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank |
|
self.time_step_min = time_step_min |
|
self.time_step_max = time_step_max |
|
self.time_step_floor = time_step_floor |
|
self.rescale_prenorm_residual = rescale_prenorm_residual |
|
self.residual_in_fp32 = residual_in_fp32 |
|
self.use_cache = use_cache |
|
self.n_groups = n_groups |
|
self.num_heads = num_heads |
|
self.head_dim = head_dim |
|
self.rms_norm = rms_norm |
|
self.state_size = state_size |
|
self.chunk_size = chunk_size |
|
self.time_step_limit = time_step_limit |
|
self.tie_word_embeddings = tie_word_embeddings |
|
|
|
super().__init__( |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
pad_token_id=pad_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
__all__ = ["IBS2Config"] |
|
|