Upload model
Browse files- modeling.py +2 -1
modeling.py
CHANGED
@@ -343,6 +343,7 @@ class CTCropModel(PreTrainedModel):
|
|
343 |
rescaled_coords[:, 3] = rescaled_coords[:, 3] * img_shape[:, 0]
|
344 |
return rescaled_coords.int()
|
345 |
|
|
|
346 |
def crop(
|
347 |
self,
|
348 |
x: np.ndarray,
|
@@ -351,7 +352,7 @@ class CTCropModel(PreTrainedModel):
|
|
351 |
raw_hu: bool = False,
|
352 |
remove_empty_slices: bool = False,
|
353 |
add_buffer: float | tuple[float, float] | None = None,
|
354 |
-
) -> np.ndarray:
|
355 |
assert mode in ["2d", "3d"]
|
356 |
if device is None:
|
357 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
343 |
rescaled_coords[:, 3] = rescaled_coords[:, 3] * img_shape[:, 0]
|
344 |
return rescaled_coords.int()
|
345 |
|
346 |
+
@torch.no_grad()
|
347 |
def crop(
|
348 |
self,
|
349 |
x: np.ndarray,
|
|
|
352 |
raw_hu: bool = False,
|
353 |
remove_empty_slices: bool = False,
|
354 |
add_buffer: float | tuple[float, float] | None = None,
|
355 |
+
) -> np.ndarray | tuple[np.ndarray, list[int]]:
|
356 |
assert mode in ["2d", "3d"]
|
357 |
if device is None:
|
358 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|