ct-crop / modeling.py
ianpan's picture
Upload model
51ec09c verified
import cv2
import glob
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from timm import create_model
from .configuration import CTCropConfig
_PYDICOM_AVAILABLE = False
try:
from pydicom import dcmread
_PYDICOM_AVAILABLE = True
except ModuleNotFoundError:
pass
class CTCropModel(PreTrainedModel):
config_class = CTCropConfig
def __init__(self, config):
super().__init__(config)
self.backbone = create_model(
model_name=config.backbone,
pretrained=False,
num_classes=0,
global_pool="",
features_only=False,
in_chans=config.in_chans,
)
self.dropout = nn.Dropout(p=config.dropout)
self.linear = nn.Linear(config.feature_dim, config.num_classes)
def normalize(self, x: torch.Tensor) -> torch.Tensor:
# [0, 255] -> [-1, 1]
mini, maxi = 0.0, 255.0
x = (x - mini) / (maxi - mini)
x = (x - 0.5) * 2.0
return x
@staticmethod
def window(x: np.ndarray, WL: int, WW: int) -> np.ndarray[np.uint8]:
# applying windowing to CT
lower, upper = WL - WW // 2, WL + WW // 2
x = np.clip(x, lower, upper)
x = (x - lower) / (upper - lower)
return (x * 255.0).astype("uint8")
@staticmethod
def validate_windows_type(windows):
assert isinstance(windows, tuple) or isinstance(windows, list)
if isinstance(windows, tuple):
assert len(windows) == 2
assert [isinstance(_, int) for _ in windows]
elif isinstance(windows, list):
assert all([isinstance(_, tuple) for _ in windows])
assert all([len(_) == 2 for _ in windows])
assert all([isinstance(__, int) for _ in windows for __ in _])
@staticmethod
def determine_dicom_orientation(ds) -> int:
iop = ds.ImageOrientationPatient
# Calculate the direction cosine for the normal vector of the plane
normal_vector = np.cross(iop[:3], iop[3:])
# Determine the plane based on the largest component of the normal vector
abs_normal = np.abs(normal_vector)
if abs_normal[0] > abs_normal[1] and abs_normal[0] > abs_normal[2]:
return 0 # sagittal
elif abs_normal[1] > abs_normal[0] and abs_normal[1] > abs_normal[2]:
return 1 # coronal
else:
return 2 # axial
def load_image_from_dicom(
self, path: str, windows: tuple[int, int] | list[tuple[int, int]] | None = None
) -> np.ndarray:
# windows can be tuple of (WINDOW_LEVEL, WINDOW_WIDTH)
# or list of tuples if wishing to generate multi-channel image using
# > 1 window
if not _PYDICOM_AVAILABLE:
raise Exception("`pydicom` is not installed")
dicom = dcmread(path)
array = dicom.pixel_array.astype("float32")
m, b = float(dicom.RescaleSlope), float(dicom.RescaleIntercept)
array = array * m + b
if windows is None:
return array
self.validate_windows_type(windows)
if isinstance(windows, tuple):
windows = [windows]
arr_list = []
for WL, WW in windows:
arr_list.append(self.window(array.copy(), WL, WW))
array = np.stack(arr_list, axis=-1)
if array.shape[-1] == 1:
array = np.squeeze(array, axis=-1)
return array
@staticmethod
def is_valid_dicom(
ds,
fname: str = "",
sort_by_instance_number: bool = False,
exclude_invalid_dicoms: bool = False,
) -> bool:
attributes = [
"pixel_array",
"RescaleSlope",
"RescaleIntercept",
]
if sort_by_instance_number:
attributes.append("InstanceNumber")
else:
attributes.append("ImagePositionPatient")
attributes.append("ImageOrientationPatient")
attributes_present = [hasattr(ds, attr) for attr in attributes]
valid = all(attributes_present)
if not valid and not exclude_invalid_dicoms:
raise Exception(
f"invalid DICOM file [{fname}]: missing attributes: {list(np.array(attributes)[~np.array(attributes_present)])}"
)
return valid
@staticmethod
def most_common_element(lst):
return max(set(lst), key=lst.count)
@staticmethod
def center_crop_or_pad_borders(image, size):
height, width = image.shape[:2]
new_height, new_width = size
if new_height < height:
# crop top and bottom
crop_top = (height - new_height) // 2
crop_bottom = height - new_height - crop_top
image = image[crop_top:-crop_bottom]
elif new_height > height:
# pad top and bottom
pad_top = (new_height - height) // 2
pad_bottom = new_height - height - pad_top
image = np.pad(
image,
((pad_top, pad_bottom), (0, 0)),
mode="constant",
constant_values=0,
)
if new_width < width:
# crop left and right
crop_left = (width - new_width) // 2
crop_right = width - new_width - crop_left
image = image[:, crop_left:-crop_right]
elif new_width > width:
# pad left and right
pad_left = (new_width - width) // 2
pad_right = new_width - width - pad_left
image = np.pad(
image,
((0, 0), (pad_left, pad_right)),
mode="constant",
constant_values=0,
)
return image
def load_stack_from_dicom_folder(
self,
path: str,
windows: tuple[int, int] | list[tuple[int, int]] | None = None,
dicom_extension: str = ".dcm",
sort_by_instance_number: bool = False,
exclude_invalid_dicoms: bool = False,
fix_unequal_shapes: str = "crop_pad",
return_sorted_dicom_files: bool = False,
) -> np.ndarray | tuple[np.ndarray, list[str]]:
if not _PYDICOM_AVAILABLE:
raise Exception("`pydicom` is not installed")
dicom_files = glob.glob(os.path.join(path, f"*{dicom_extension}"))
if len(dicom_files) == 0:
raise Exception(
f"No DICOM files found in `{path}` using `dicom_extension={dicom_extension}`"
)
dicoms = [dcmread(f) for f in dicom_files]
dicoms = [
(d, dicom_files[idx])
for idx, d in enumerate(dicoms)
if self.is_valid_dicom(
d, dicom_files[idx], sort_by_instance_number, exclude_invalid_dicoms
)
]
# handles exclude_invalid_dicoms=True and return_sorted_dicom_files=True
# by only including valid DICOM filenames
dicom_files = [_[1] for _ in dicoms]
dicoms = [_[0] for _ in dicoms]
slices = [dcm.pixel_array.astype("float32") for dcm in dicoms]
shapes = np.stack([s.shape for s in slices], axis=0)
if not np.all(shapes == shapes[0]):
unique_shapes, counts = np.unique(shapes, axis=0, return_counts=True)
standard_shape = tuple(unique_shapes[np.argmax(counts)])
print(
f"warning: different array shapes present, using {fix_unequal_shapes} -> {standard_shape}"
)
if fix_unequal_shapes == "crop_pad":
slices = [
self.center_crop_or_pad_borders(s, standard_shape)
if s.shape != standard_shape
else s
for s in slices
]
elif fix_unequal_shapes == "resize":
slices = [
cv2.resize(s, standard_shape) if s.shape != standard_shape else s
for s in slices
]
slices = np.stack(slices, axis=0)
# find orientation
orientation = [self.determine_dicom_orientation(dcm) for dcm in dicoms]
# use most common
orientation = self.most_common_element(orientation)
# sort using ImagePositionPatient
# orientation is index to use for sorting
if sort_by_instance_number:
positions = [float(d.InstanceNumber) for d in dicoms]
else:
positions = [float(d.ImagePositionPatient[orientation]) for d in dicoms]
indices = np.argsort(positions)
slices = slices[indices]
# rescale
m, b = (
[float(d.RescaleSlope) for d in dicoms],
[float(d.RescaleIntercept) for d in dicoms],
)
m, b = self.most_common_element(m), self.most_common_element(b)
slices = slices * m + b
if windows is not None:
self.validate_windows_type(windows)
if isinstance(windows, tuple):
windows = [windows]
arr_list = []
for WL, WW in windows:
arr_list.append(self.window(slices.copy(), WL, WW))
slices = np.stack(arr_list, axis=-1)
if slices.shape[-1] == 1:
slices = np.squeeze(slices, axis=-1)
if return_sorted_dicom_files:
return slices, [dicom_files[idx] for idx in indices]
return slices
@staticmethod
def preprocess(x: np.ndarray, mode="2d") -> np.ndarray:
mode = mode.lower()
if mode == "2d":
x = cv2.resize(x, (256, 256))
if x.ndim == 2:
x = x[:, :, np.newaxis]
elif mode == "3d":
x = np.stack([cv2.resize(s, (256, 256)) for s in x], axis=0)
if x.ndim == 3:
x = x[:, :, :, np.newaxis]
return x
@staticmethod
def add_buffer_to_coords(
coords: torch.Tensor,
buffer: float | tuple[float, float] = 0.05,
empty_threshold: float = 1e-4,
) -> torch.Tensor:
coords = coords.clone()
empty = (coords < empty_threshold).all(dim=1)
# assumes coords is a torch.Tensor of shape (N, 4) containing
# normalized x, y, w, h coordinates
# buffer is for EACH SIDE (i.e., 0.05 will add total of 0.1)
assert len(coords.shape) == 2
assert coords.shape[1] == 4
if isinstance(buffer, float):
buffer = buffer, buffer
assert buffer[0] >= 0 and buffer[1] >= 0
assert coords.min() >= 0 and coords.max() <= 1
if buffer == 0 or empty.sum() == coords.shape[0]:
return coords
# convert xywh->xyxy
x1, y1, w, h = coords.unbind(1)
x2, y2 = x1 + w, y1 + h
# since coords are normalized, can use buffer value directly
w_buf, h_buf = buffer
x1, y1, x2, y2 = x1 - w_buf, y1 - h_buf, x2 + w_buf, y2 + h_buf
x1, y1 = torch.clamp_min(x1, 0), torch.clamp_min(y1, 0)
x2, y2 = torch.clamp_max(x2, 1), torch.clamp_max(y2, 1)
w, h = x2 - x1, y2 - y1
coords = torch.stack([x1, y1, w, h], dim=1)
coords[empty] = 0
assert coords.min() >= 0 and coords.max() <= 1
return coords
def forward(
self,
x: torch.Tensor,
img_shape: torch.Tensor | None = None,
add_buffer: float | tuple[float, float] | None = None,
) -> torch.Tensor:
# if img_shape is provided, will provide rescaled coordinates
# otherwise, provide normalized [0, 1] coordinates
# coords format is xywh
if img_shape is not None:
assert (
x.size(0) == img_shape.size(0)
), f"x.size(0) [{x.size(0)}] must equal img_shape.size(0) [{img_shape.size(0)}]"
# img_shape = (batch_dim, 2)
# img_shape[:, 0] = height, img_shape[:, 1] = width
x = self.normalize(x)
# avg pooling
features = F.adaptive_avg_pool2d(self.backbone(x), 1).flatten(1)
coords = self.linear(self.dropout(features)).sigmoid()
if add_buffer is not None:
coords = self.add_buffer_to_coords(coords, add_buffer)
if img_shape is None:
return coords
rescaled_coords = coords.clone()
rescaled_coords[:, 0] = rescaled_coords[:, 0] * img_shape[:, 1]
rescaled_coords[:, 1] = rescaled_coords[:, 1] * img_shape[:, 0]
rescaled_coords[:, 2] = rescaled_coords[:, 2] * img_shape[:, 1]
rescaled_coords[:, 3] = rescaled_coords[:, 3] * img_shape[:, 0]
return rescaled_coords.int()
@torch.no_grad()
def crop(
self,
x: np.ndarray,
mode: str,
device: str | None = None,
raw_hu: bool = False,
remove_empty_slices: bool = False,
add_buffer: float | tuple[float, float] | None = None,
return_coords: bool = False,
) -> (
np.ndarray
| tuple[np.ndarray, list[int]]
| tuple[np.ndarray, list[int], list[int]]
):
assert mode in ["2d", "3d"]
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
assert isinstance(x, np.ndarray)
assert (
x.ndim <= 4 and x.ndim >= 2
), f"# of dimensions should be 2, 3, or 4, got {x.ndim}"
x0 = x
if mode == "2d":
x = np.expand_dims(x, axis=0)
img_shapes = torch.tensor([_.shape[:2] for _ in x]).to(device)
x = self.preprocess(x, mode="3d")
if raw_hu:
# if input is in Hounsfield units, apply soft tissue window
x = self.window(x, WL=50, WW=400)
# torchify
x = torch.from_numpy(x)
x = x.permute(0, 3, 1, 2).float().to(device)
if x.size(1) > 1:
# if multi-channel, take mean
x = x.mean(1, keepdim=True)
coords = self.forward(x, img_shape=img_shapes, add_buffer=add_buffer)
# get the union of all slice-wise bounding boxes
# exclude empty boxes
empty = coords.sum(dim=1) == 0
coords = coords[~empty]
# if all empty, return original input
if coords.shape[0] == 0:
print("no foreground detected, returning original input ...")
return x0
x, y, w, h = coords.unbind(1)
# xywh -> xyxy
x1, y1, x2, y2 = x, y, x + w, y + h
x1, y1 = x1.min().item(), y1.min().item()
x2, y2 = x2.max().item(), y2.max().item()
cropped = x0[:, y1:y2, x1:x2] if mode == "3d" else x0[y1:y2, x1:x2]
if remove_empty_slices and empty.sum() > 0:
empty_indices = list(torch.where(empty)[0].cpu().numpy())
print(f"removing {empty.sum()} empty slices ...")
cropped = cropped[~empty.cpu().numpy()]
if not isinstance(cropped, tuple):
cropped = (cropped,)
cropped = cropped + (empty_indices,)
if return_coords:
if not isinstance(cropped, tuple):
cropped = (cropped,)
cropped = cropped + ([x1, y1, x2, y2],)
return cropped