File size: 14,678 Bytes
4cbe18f f18c485 4cbe18f f18c485 4cbe18f f18c485 1fc423e f18c485 4cbe18f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import cv2
import glob
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from timm import create_model
from .configuration import CTCropConfig
_PYDICOM_AVAILABLE = False
try:
from pydicom import dcmread
_PYDICOM_AVAILABLE = True
except ModuleNotFoundError:
pass
class CTCropModel(PreTrainedModel):
config_class = CTCropConfig
def __init__(self, config):
super().__init__(config)
self.backbone = create_model(
model_name=config.backbone,
pretrained=False,
num_classes=0,
global_pool="",
features_only=False,
in_chans=config.in_chans,
)
self.dropout = nn.Dropout(p=config.dropout)
self.linear = nn.Linear(config.feature_dim, config.num_classes)
def normalize(self, x: torch.Tensor) -> torch.Tensor:
# [0, 255] -> [-1, 1]
mini, maxi = 0.0, 255.0
x = (x - mini) / (maxi - mini)
x = (x - 0.5) * 2.0
return x
@staticmethod
def window(x: np.ndarray, WL: int, WW: int) -> np.ndarray[np.uint8]:
# applying windowing to CT
lower, upper = WL - WW // 2, WL + WW // 2
x = np.clip(x, lower, upper)
x = (x - lower) / (upper - lower)
return (x * 255.0).astype("uint8")
@staticmethod
def validate_windows_type(windows):
assert isinstance(windows, tuple) or isinstance(windows, list)
if isinstance(windows, tuple):
assert len(windows) == 2
assert [isinstance(_, int) for _ in windows]
elif isinstance(windows, list):
assert all([isinstance(_, tuple) for _ in windows])
assert all([len(_) == 2 for _ in windows])
assert all([isinstance(__, int) for _ in windows for __ in _])
@staticmethod
def determine_dicom_orientation(ds) -> int:
iop = ds.ImageOrientationPatient
# Calculate the direction cosine for the normal vector of the plane
normal_vector = np.cross(iop[:3], iop[3:])
# Determine the plane based on the largest component of the normal vector
abs_normal = np.abs(normal_vector)
if abs_normal[0] > abs_normal[1] and abs_normal[0] > abs_normal[2]:
return 0 # sagittal
elif abs_normal[1] > abs_normal[0] and abs_normal[1] > abs_normal[2]:
return 1 # coronal
else:
return 2 # axial
def load_image_from_dicom(
self, path: str, windows: tuple[int, int] | list[tuple[int, int]] | None = None
) -> np.ndarray:
# windows can be tuple of (WINDOW_LEVEL, WINDOW_WIDTH)
# or list of tuples if wishing to generate multi-channel image using
# > 1 window
if not _PYDICOM_AVAILABLE:
raise Exception("`pydicom` is not installed")
dicom = dcmread(path)
array = dicom.pixel_array.astype("float32")
m, b = float(dicom.RescaleSlope), float(dicom.RescaleIntercept)
array = array * m + b
if windows is None:
return array
self.validate_windows_type(windows)
if isinstance(windows, tuple):
windows = [windows]
arr_list = []
for WL, WW in windows:
arr_list.append(self.window(array.copy(), WL, WW))
array = np.stack(arr_list, axis=-1)
if array.shape[-1] == 1:
array = np.squeeze(array, axis=-1)
return array
@staticmethod
def is_valid_dicom(
ds,
fname: str = "",
sort_by_instance_number: bool = False,
exclude_invalid_dicoms: bool = False,
):
attributes = [
"pixel_array",
"RescaleSlope",
"RescaleIntercept",
]
if sort_by_instance_number:
attributes.append("InstanceNumber")
else:
attributes.append("ImagePositionPatient")
attributes.append("ImageOrientationPatient")
attributes_present = [hasattr(ds, attr) for attr in attributes]
valid = all(attributes_present)
if not valid and not exclude_invalid_dicoms:
raise Exception(
f"invalid DICOM file [{fname}]: missing attributes: {list(np.array(attributes)[~np.array(attributes_present)])}"
)
return valid
@staticmethod
def most_common_element(lst):
return max(set(lst), key=lst.count)
@staticmethod
def center_crop_or_pad_borders(image, size):
height, width = image.shape[:2]
new_height, new_width = size
if new_height < height:
# crop top and bottom
crop_top = (height - new_height) // 2
crop_bottom = height - new_height - crop_top
image = image[crop_top:-crop_bottom]
elif new_height > height:
# pad top and bottom
pad_top = (new_height - height) // 2
pad_bottom = new_height - height - pad_top
image = np.pad(
image,
((pad_top, pad_bottom), (0, 0)),
mode="constant",
constant_values=0,
)
if new_width < width:
# crop left and right
crop_left = (width - new_width) // 2
crop_right = width - new_width - crop_left
image = image[:, crop_left:-crop_right]
elif new_width > width:
# pad left and right
pad_left = (new_width - width) // 2
pad_right = new_width - width - pad_left
image = np.pad(
image,
((0, 0), (pad_left, pad_right)),
mode="constant",
constant_values=0,
)
return image
def load_stack_from_dicom_folder(
self,
path: str,
windows: tuple[int, int] | list[tuple[int, int]] | None = None,
dicom_extension: str = ".dcm",
sort_by_instance_number: bool = False,
exclude_invalid_dicoms: bool = False,
fix_unequal_shapes: str = "crop_pad",
return_sorted_dicom_files: bool = False,
) -> np.ndarray | tuple[np.ndarray, list[str]]:
if not _PYDICOM_AVAILABLE:
raise Exception("`pydicom` is not installed")
dicom_files = glob.glob(os.path.join(path, f"*{dicom_extension}"))
if len(dicom_files) == 0:
raise Exception(
f"No DICOM files found in `{path}` using `dicom_extension={dicom_extension}`"
)
dicoms = [dcmread(f) for f in dicom_files]
dicoms = [
(d, dicom_files[idx])
for idx, d in enumerate(dicoms)
if self.is_valid_dicom(
d, dicom_files[idx], sort_by_instance_number, exclude_invalid_dicoms
)
]
# handles exclude_invalid_dicoms=True and return_sorted_dicom_files=True
# by only including valid DICOM filenames
dicom_files = [_[1] for _ in dicoms]
dicoms = [_[0] for _ in dicoms]
slices = [dcm.pixel_array.astype("float32") for dcm in dicoms]
shapes = np.stack([s.shape for s in slices], axis=0)
if not np.all(shapes == shapes[0]):
unique_shapes, counts = np.unique(shapes, axis=0, return_counts=True)
standard_shape = tuple(unique_shapes[np.argmax(counts)])
print(
f"warning: different array shapes present, using {fix_unequal_shapes} -> {standard_shape}"
)
if fix_unequal_shapes == "crop_pad":
slices = [
self.center_crop_or_pad_borders(s, standard_shape)
if s.shape != standard_shape
else s
for s in slices
]
elif fix_unequal_shapes == "resize":
slices = [
cv2.resize(s, standard_shape) if s.shape != standard_shape else s
for s in slices
]
slices = np.stack(slices, axis=0)
# find orientation
orientation = [self.determine_dicom_orientation(dcm) for dcm in dicoms]
# use most common
orientation = self.most_common_element(orientation)
# sort using ImagePositionPatient
# orientation is index to use for sorting
if sort_by_instance_number:
positions = [float(d.InstanceNumber) for d in dicoms]
else:
positions = [float(d.ImagePositionPatient[orientation]) for d in dicoms]
indices = np.argsort(positions)
slices = slices[indices]
# rescale
m, b = (
[float(d.RescaleSlope) for d in dicoms],
[float(d.RescaleIntercept) for d in dicoms],
)
m, b = self.most_common_element(m), self.most_common_element(b)
slices = slices * m + b
if windows is not None:
self.validate_windows_type(windows)
if isinstance(windows, tuple):
windows = [windows]
arr_list = []
for WL, WW in windows:
arr_list.append(self.window(slices.copy(), WL, WW))
slices = np.stack(arr_list, axis=-1)
if slices.shape[-1] == 1:
slices = np.squeeze(slices, axis=-1)
if return_sorted_dicom_files:
return slices, [dicom_files[idx] for idx in indices]
return slices
@staticmethod
def preprocess(x: np.ndarray, mode="2d") -> np.ndarray:
mode = mode.lower()
if mode == "2d":
x = cv2.resize(x, (256, 256))
if x.ndim == 2:
x = x[:, :, np.newaxis]
elif mode == "3d":
x = np.stack([cv2.resize(s, (256, 256)) for s in x], axis=0)
if x.ndim == 3:
x = x[:, :, :, np.newaxis]
return x
@staticmethod
def add_buffer_to_coords(
coords: torch.Tensor,
buffer: float | tuple[float, float] = 0.05,
empty_threshold: float = 1e-4,
):
coords = coords.clone()
empty = (coords < empty_threshold).all(dim=1)
# assumes coords is a torch.Tensor of shape (N, 4) containing
# normalized x, y, w, h coordinates
# buffer is for EACH SIDE (i.e., 0.05 will add total of 0.1)
assert len(coords.shape) == 2
assert coords.shape[1] == 4
if isinstance(buffer, float):
buffer = buffer, buffer
assert buffer[0] >= 0 and buffer[1] >= 0
assert coords.min() >= 0 and coords.max() <= 1
if buffer == 0 or empty.sum() == coords.shape[0]:
return coords
# convert xywh->xyxy
x1, y1, w, h = coords.unbind(1)
x2, y2 = x1 + w, y1 + h
# since coords are normalized, can use buffer value directly
w_buf, h_buf = buffer
x1, y1, x2, y2 = x1 - w_buf, y1 - h_buf, x2 + w_buf, y2 + h_buf
x1, y1 = torch.clamp_min(x1, 0), torch.clamp_min(y1, 0)
x2, y2 = torch.clamp_max(x2, 1), torch.clamp_max(y2, 1)
w, h = x2 - x1, y2 - y1
coords = torch.stack([x1, y1, w, h], dim=1)
coords[empty] = 0
assert coords.min() >= 0 and coords.max() <= 1
return coords
def forward(
self,
x: torch.Tensor,
img_shape: torch.Tensor | None = None,
add_buffer: float | tuple[float, float] | None = None,
) -> torch.Tensor:
# if img_shape is provided, will provide rescaled coordinates
# otherwise, provide normalized [0, 1] coordinates
# coords format is xywh
if img_shape is not None:
assert (
x.size(0) == img_shape.size(0)
), f"x.size(0) [{x.size(0)}] must equal img_shape.size(0) [{img_shape.size(0)}]"
# img_shape = (batch_dim, 2)
# img_shape[:, 0] = height, img_shape[:, 1] = width
x = self.normalize(x)
# avg pooling
features = F.adaptive_avg_pool2d(self.backbone(x), 1).flatten(1)
coords = self.linear(features).sigmoid()
if add_buffer is not None:
coords = self.add_buffer_to_coords(coords, add_buffer)
if img_shape is None:
return coords
rescaled_coords = coords.clone()
rescaled_coords[:, 0] = rescaled_coords[:, 0] * img_shape[:, 1]
rescaled_coords[:, 1] = rescaled_coords[:, 1] * img_shape[:, 0]
rescaled_coords[:, 2] = rescaled_coords[:, 2] * img_shape[:, 1]
rescaled_coords[:, 3] = rescaled_coords[:, 3] * img_shape[:, 0]
return rescaled_coords.int()
def crop(
self,
x: np.ndarray,
mode: str,
device: str | None = None,
raw_hu: bool = False,
remove_empty_slices: bool = False,
add_buffer: float | tuple[float, float] | None = None,
) -> np.ndarray:
assert mode in ["2d", "3d"]
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
assert isinstance(x, np.ndarray)
assert (
x.ndim <= 4 and x.ndim >= 2
), f"# of dimensions should be 2, 3, or 4, got {x.ndim}"
x0 = x
if mode == "2d":
x = np.expand_dims(x, axis=0)
img_shapes = torch.tensor([_.shape[:2] for _ in x]).to(device)
x = self.preprocess(x, mode="3d")
if raw_hu:
# if input is in Hounsfield units, apply soft tissue window
x = self.window(x, WL=50, WW=400)
# torchify
x = torch.from_numpy(x)
x = x.permute(0, 3, 1, 2).float().to(device)
if x.size(1) > 1:
# if multi-channel, take mean
x = x.mean(1, keepdim=True)
coords = self.forward(x, img_shape=img_shapes, add_buffer=add_buffer)
# get the union of all slice-wise bounding boxes
# exclude empty boxes
empty = coords.sum(dim=1) == 0
coords = coords[~empty]
# if all empty, return original input
if coords.shape[0] == 0:
print("no foreground detected, returning original input ...")
return x0
x, y, w, h = coords.unbind(1)
# xywh -> xyxy
x1, y1, x2, y2 = x, y, x + w, y + h
x1, y1 = x1.min().item(), y1.min().item()
x2, y2 = x2.max().item(), y2.max().item()
cropped = x0[:, y1:y2, x1:x2] if mode == "3d" else x0[y1:y2, x1:x2]
if remove_empty_slices and empty.sum() > 0:
empty_indices = list(torch.where(empty)[0].cpu().numpy())
print(f"removing {empty.sum()} empty slices ...")
cropped = cropped[~empty.cpu().numpy()]
return cropped, empty_indices
return cropped
|