iamgroot42 commited on
Commit
7ed85bb
·
verified ·
1 Parent(s): 8ddd025

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md CHANGED
@@ -2,4 +2,52 @@
2
  license: mit
3
  ---
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  Model training details and data will be uploaded soon!
 
2
  license: mit
3
  ---
4
 
5
+ ## Usage
6
+
7
+ Code example
8
+
9
+ ```python
10
+ import torch.nn.functional as F
11
+ from torch import Tensor
12
+ from transformers import AutoTokenizer, AutoModel
13
+
14
+ def average_pool(last_hidden_states: Tensor,
15
+ attention_mask: Tensor) -> Tensor:
16
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
17
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
18
+
19
+ input_texts = [
20
+ "what is the capital of Japan?",
21
+ "Kyoto",
22
+ "Tokyo",
23
+ "Beijing"
24
+ ]
25
+
26
+ tokenizer = AutoTokenizer.from_pretrained("iamgroot42/rover_nexus")
27
+ model = AutoModel.from_pretrained("iamgroot42/rover_nexus")
28
+
29
+ # Tokenize the input texts
30
+ batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
31
+
32
+ outputs = model(**batch_dict)
33
+ embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
34
+
35
+ # (Optionally) normalize embeddings
36
+ embeddings = F.normalize(embeddings, p=2, dim=1)
37
+ scores = (embeddings[:1] @ embeddings[1:].T) * 100
38
+ print(scores.tolist())
39
+ ```
40
+
41
+ Use with sentence-transformers:
42
+ ```python
43
+ from sentence_transformers import SentenceTransformer
44
+ from sentence_transformers.util import cos_sim
45
+
46
+ sentences = ['That is a happy person', 'That is a sad person']
47
+
48
+ model = SentenceTransformer('iamgroot42/rover_nexus')
49
+ embeddings = model.encode(sentences)
50
+ print(cos_sim(embeddings[0], embeddings[1]))
51
+ ```
52
+
53
  Model training details and data will be uploaded soon!