File size: 4,212 Bytes
040fded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import math
from transformers.configuration_utils import PretrainedConfig


class HymbaConfig(PretrainedConfig):

    model_type = "hymba"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
            self,
            vocab_size=65536,
            tie_word_embeddings=False,
            hidden_size=4096,
            intermediate_size=14336,
            num_hidden_layers=32,
            num_attention_heads=32,
            num_key_value_heads=8,
            hidden_act="silu",
            initializer_range=0.02,
            rms_norm_eps=1e-6,
            use_cache=True,
            calc_logits_for_entire_prompt=False,
            output_router_logits=False,
            router_aux_loss_coef=0.001,
            pad_token_id=0,
            bos_token_id=1,
            eos_token_id=2,
            sliding_window=None,
            max_position_embeddings=262144,
            orig_max_position_embeddings=None,
            attention_dropout=0.0,
            num_experts_per_tok=2,
            num_experts=16,
            use_mamba_kernels=True,
            mamba_d_state=16,
            mamba_d_conv=4,
            mamba_expand=2,
            mamba_dt_rank="auto",
            mamba_conv_bias=True,
            mamba_proj_bias=False,
            mamba_inner_layernorms=True,
            kv_reuse_every_i_layer=-1,
            kv_reuse_group=None,
            kv_weight_reuse=False,
            global_attn_idx=None,
            num_mamba=1,
            attn_implementation_new='sdpa',
            rope_type=None,
            **kwargs,
    ):
        self.vocab_size = vocab_size
        self.tie_word_embeddings = tie_word_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.sliding_window = sliding_window
        self.max_position_embeddings = max_position_embeddings
        self.orig_max_position_embeddings = orig_max_position_embeddings
        self.attention_dropout = attention_dropout

        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps

        self.use_cache = use_cache
        self.calc_logits_for_entire_prompt = calc_logits_for_entire_prompt
        self.output_router_logits = output_router_logits
        self.router_aux_loss_coef = router_aux_loss_coef

        self.num_experts_per_tok = num_experts_per_tok
        self.num_experts = num_experts

        self.use_mamba_kernels = use_mamba_kernels
        self.mamba_d_state = mamba_d_state
        self.mamba_d_conv = mamba_d_conv
        self.mamba_expand = mamba_expand
        self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
        self.mamba_conv_bias = mamba_conv_bias
        self.mamba_proj_bias = mamba_proj_bias
        self.mamba_inner_layernorms = mamba_inner_layernorms

        self.attn_hidden_size = kwargs.pop("attn_hidden_size", -1)
        self.kq_head_dim = kwargs.pop("kq_head_dim", -1)
        self.v_head_dim = kwargs.pop("v_head_dim", -1)
        self.kq_norm = kwargs.pop("kq_norm", None)
        self.rope = kwargs.pop("rope", False)
        self.rope_theta = kwargs.pop("rope_theta", 10000.0)
        self.num_memory_tokens = kwargs.pop("num_memory_tokens", 0)
        self.memory_tokens_interspersed_every = kwargs.pop("memory_tokens_interspersed_every", 0)

        self.kv_reuse_every_i_layer = kv_reuse_every_i_layer
        self.kv_reuse_group = kv_reuse_group
        self.kv_weight_reuse = kv_weight_reuse

        self.global_attn_idx = global_attn_idx

        self.num_mamba = num_mamba

        self.attn_implementation_new = attn_implementation_new

        self.rope_type = rope_type
        
        
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )