File size: 3,992 Bytes
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""
3D Squeeze and Excitation Modules
*****************************
3D Extensions of the following 2D squeeze and excitation blocks:
    1. `Channel Squeeze and Excitation <https://arxiv.org/abs/1709.01507>`_
    2. `Spatial Squeeze and Excitation <https://arxiv.org/abs/1803.02579>`_
    3. `Channel and Spatial Squeeze and Excitation <https://arxiv.org/abs/1803.02579>`_
New Project & Excite block, designed specifically for 3D inputs
    'quote'
    Coded by -- Anne-Marie Rickmann (https://github.com/arickm)
"""

import torch
from torch import nn as nn
from torch.nn import functional as F


class ChannelSELayer3D(nn.Module):
    """
    3D extension of Squeeze-and-Excitation (SE) block described in:
        *Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507*
        *Zhu et al., AnatomyNet, arXiv:arXiv:1808.05238*
    """

    def __init__(self, num_channels, reduction_ratio=2):
        """
        Args:
            num_channels (int): No of input channels
            reduction_ratio (int): By how much should the num_channels should be reduced
        """
        super(ChannelSELayer3D, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool3d(1)
        num_channels_reduced = num_channels // reduction_ratio
        self.reduction_ratio = reduction_ratio
        self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
        self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        batch_size, num_channels, D, H, W = x.size()
        # Average along each channel
        squeeze_tensor = self.avg_pool(x)

        # channel excitation
        fc_out_1 = self.relu(self.fc1(squeeze_tensor.view(batch_size, num_channels)))
        fc_out_2 = self.sigmoid(self.fc2(fc_out_1))

        output_tensor = torch.mul(x, fc_out_2.view(batch_size, num_channels, 1, 1, 1))

        return output_tensor


class SpatialSELayer3D(nn.Module):
    """
    3D extension of SE block -- squeezing spatially and exciting channel-wise described in:
        *Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, MICCAI 2018*
    """

    def __init__(self, num_channels):
        """
        Args:
            num_channels (int): No of input channels
        """
        super(SpatialSELayer3D, self).__init__()
        self.conv = nn.Conv3d(num_channels, 1, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x, weights=None):
        """
        Args:
            weights (torch.Tensor): weights for few shot learning
            x: X, shape = (batch_size, num_channels, D, H, W)

        Returns:
            (torch.Tensor): output_tensor
        """
        # channel squeeze
        batch_size, channel, D, H, W = x.size()

        if weights:
            weights = weights.view(1, channel, 1, 1)
            out = F.conv2d(x, weights)
        else:
            out = self.conv(x)

        squeeze_tensor = self.sigmoid(out)

        # spatial excitation
        output_tensor = torch.mul(x, squeeze_tensor.view(batch_size, 1, D, H, W))

        return output_tensor


class ChannelSpatialSELayer3D(nn.Module):
    """
       3D extension of concurrent spatial and channel squeeze & excitation:
           *Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, arXiv:1803.02579*
       """

    def __init__(self, num_channels, reduction_ratio=2):
        """
        Args:
            num_channels (int): No of input channels
            reduction_ratio (int): By how much should the num_channels should be reduced
        """
        super(ChannelSpatialSELayer3D, self).__init__()
        self.cSE = ChannelSELayer3D(num_channels, reduction_ratio)
        self.sSE = SpatialSELayer3D(num_channels)

    def forward(self, input_tensor):
        output_tensor = torch.max(self.cSE(input_tensor), self.sSE(input_tensor))
        return output_tensor