File size: 1,369 Bytes
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

from medomni.common.registry import registry
from medomni.tasks.base_task import BaseTask
from medomni.common.logger import MetricLogger, SmoothedValue
from medomni.datasets.data_utils import prepare_sample
import torch.distributed as dist

@registry.register_task("image_text_pretrain")
class ImageTextPretrainTask(BaseTask):
    def __init__(self):
        super().__init__()

    def evaluation(self, model, data_loader, cuda_enabled=True):
        if not hasattr(data_loader, "__next__"):
            # convert to iterator if not already
            data_loader = iter(data_loader)

        metric_logger = MetricLogger(delimiter="  ")
        header = "Evaluation"
        # TODO make it configurable
        print_freq = 10

        results = []

        ipdb.set_trace()
        for samples in metric_logger.log_every(data_loader, print_freq, header):
            samples = prepare_sample(samples, cuda_enabled=cuda_enabled)

            eval_output = self.valid_step(model=model, samples=samples)
            results.extend(eval_output)

        if is_dist_avail_and_initialized():
            dist.barrier()

        return results