File size: 20,128 Bytes
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
from functools import partial

import torch
from torch import nn as nn
from torch.nn import functional as F

from medomni.models.unet3d.se import ChannelSELayer3D, ChannelSpatialSELayer3D, SpatialSELayer3D
import ipdb


def create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding, is3d):
    """
    Create a list of modules with together constitute a single conv layer with non-linearity
    and optional batchnorm/groupnorm.

    Args:
        in_channels (int): number of input channels
        out_channels (int): number of output channels
        kernel_size(int or tuple): size of the convolving kernel
        order (string): order of things, e.g.
            'cr' -> conv + ReLU
            'gcr' -> groupnorm + conv + ReLU
            'cl' -> conv + LeakyReLU
            'ce' -> conv + ELU
            'bcr' -> batchnorm + conv + ReLU
        num_groups (int): number of groups for the GroupNorm
        padding (int or tuple): add zero-padding added to all three sides of the input
        is3d (bool): is3d (bool): if True use Conv3d, otherwise use Conv2d
    Return:
        list of tuple (name, module)
    """
    assert 'c' in order, "Conv layer MUST be present"
    assert order[0] not in 'rle', 'Non-linearity cannot be the first operation in the layer'

    modules = []
    for i, char in enumerate(order):
        if char == 'r':
            modules.append(('ReLU', nn.ReLU(inplace=True)))
        elif char == 'l':
            modules.append(('LeakyReLU', nn.LeakyReLU(inplace=True)))
        elif char == 'e':
            modules.append(('ELU', nn.ELU(inplace=True)))
        elif char == 'c':
            # add learnable bias only in the absence of batchnorm/groupnorm
            bias = not ('g' in order or 'b' in order)
            if is3d:
                conv = nn.Conv3d(in_channels, out_channels, kernel_size, padding=padding, bias=bias)
            else:
                conv = nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding, bias=bias)

            modules.append(('conv', conv))
        elif char == 'g':
            is_before_conv = i < order.index('c')
            if is_before_conv:
                num_channels = in_channels
            else:
                num_channels = out_channels

            # use only one group if the given number of groups is greater than the number of channels
            if num_channels < num_groups:
                num_groups = 1

            assert num_channels % num_groups == 0, f'Expected number of channels in input to be divisible by num_groups. num_channels={num_channels}, num_groups={num_groups}'
            modules.append(('groupnorm', nn.GroupNorm(num_groups=num_groups, num_channels=num_channels)))
        elif char == 'b':
            is_before_conv = i < order.index('c')
            if is3d:
                bn = nn.BatchNorm3d
            else:
                bn = nn.BatchNorm2d

            if is_before_conv:
                modules.append(('batchnorm', bn(in_channels)))
            else:
                modules.append(('batchnorm', bn(out_channels)))
        else:
            raise ValueError(f"Unsupported layer type '{char}'. MUST be one of ['b', 'g', 'r', 'l', 'e', 'c']")

    return modules


class SingleConv(nn.Sequential):
    """
    Basic convolutional module consisting of a Conv3d, non-linearity and optional batchnorm/groupnorm. The order
    of operations can be specified via the `order` parameter

    Args:
        in_channels (int): number of input channels
        out_channels (int): number of output channels
        kernel_size (int or tuple): size of the convolving kernel
        order (string): determines the order of layers, e.g.
            'cr' -> conv + ReLU
            'crg' -> conv + ReLU + groupnorm
            'cl' -> conv + LeakyReLU
            'ce' -> conv + ELU
        num_groups (int): number of groups for the GroupNorm
        padding (int or tuple): add zero-padding
        is3d (bool): if True use Conv3d, otherwise use Conv2d
    """

    def __init__(self, in_channels, out_channels, kernel_size=3, order='gcr', num_groups=8, padding=1, is3d=True):
        super(SingleConv, self).__init__()

        for name, module in create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding, is3d):
            self.add_module(name, module)


class DoubleConv(nn.Sequential):
    """
    A module consisting of two consecutive convolution layers (e.g. BatchNorm3d+ReLU+Conv3d).
    We use (Conv3d+ReLU+GroupNorm3d) by default.
    This can be changed however by providing the 'order' argument, e.g. in order
    to change to Conv3d+BatchNorm3d+ELU use order='cbe'.
    Use padded convolutions to make sure that the output (H_out, W_out) is the same
    as (H_in, W_in), so that you don't have to crop in the decoder path.

    Args:
        in_channels (int): number of input channels
        out_channels (int): number of output channels
        encoder (bool): if True we're in the encoder path, otherwise we're in the decoder
        kernel_size (int or tuple): size of the convolving kernel
        order (string): determines the order of layers, e.g.
            'cr' -> conv + ReLU
            'crg' -> conv + ReLU + groupnorm
            'cl' -> conv + LeakyReLU
            'ce' -> conv + ELU
        num_groups (int): number of groups for the GroupNorm
        padding (int or tuple): add zero-padding added to all three sides of the input
        is3d (bool): if True use Conv3d instead of Conv2d layers
    """

    def __init__(self, in_channels, out_channels, encoder, kernel_size=3, order='gcr', num_groups=8, padding=1,
                 is3d=True):
        super(DoubleConv, self).__init__()
        if encoder:
            # we're in the encoder path
            conv1_in_channels = in_channels
            conv1_out_channels = out_channels // 2
            if conv1_out_channels < in_channels:
                conv1_out_channels = in_channels
            conv2_in_channels, conv2_out_channels = conv1_out_channels, out_channels
        else:
            # we're in the decoder path, decrease the number of channels in the 1st convolution
            conv1_in_channels, conv1_out_channels = in_channels, out_channels
            conv2_in_channels, conv2_out_channels = out_channels, out_channels

        # conv1
        self.add_module('SingleConv1',
                        SingleConv(conv1_in_channels, conv1_out_channels, kernel_size, order, num_groups,
                                   padding=padding, is3d=is3d))
        # conv2
        self.add_module('SingleConv2',
                        SingleConv(conv2_in_channels, conv2_out_channels, kernel_size, order, num_groups,
                                   padding=padding, is3d=is3d))


class ResNetBlock(nn.Module):
    """
    Residual block that can be used instead of standard DoubleConv in the Encoder module.
    Motivated by: https://arxiv.org/pdf/1706.00120.pdf

    Notice we use ELU instead of ReLU (order='cge') and put non-linearity after the groupnorm.
    """

    def __init__(self, in_channels, out_channels, kernel_size=3, order='cge', num_groups=8, is3d=True, **kwargs):
        super(ResNetBlock, self).__init__()

        if in_channels != out_channels:
            # conv1x1 for increasing the number of channels
            if is3d:
                self.conv1 = nn.Conv3d(in_channels, out_channels, 1)
            else:
                self.conv1 = nn.Conv2d(in_channels, out_channels, 1)
        else:
            self.conv1 = nn.Identity()

        # residual block
        self.conv2 = SingleConv(out_channels, out_channels, kernel_size=kernel_size, order=order, num_groups=num_groups,
                                is3d=is3d)
        # remove non-linearity from the 3rd convolution since it's going to be applied after adding the residual
        n_order = order
        for c in 'rel':
            n_order = n_order.replace(c, '')
        self.conv3 = SingleConv(out_channels, out_channels, kernel_size=kernel_size, order=n_order,
                                num_groups=num_groups, is3d=is3d)

        # create non-linearity separately
        if 'l' in order:
            self.non_linearity = nn.LeakyReLU(negative_slope=0.1, inplace=True)
        elif 'e' in order:
            self.non_linearity = nn.ELU(inplace=True)
        else:
            self.non_linearity = nn.ReLU(inplace=True)

    def forward(self, x):
        # apply first convolution to bring the number of channels to out_channels
        residual = self.conv1(x)

        # residual block
        out = self.conv2(residual)
        out = self.conv3(out)

        out += residual
        out = self.non_linearity(out)

        return out


class ResNetBlockSE(ResNetBlock):
    def __init__(self, in_channels, out_channels, kernel_size=3, order='cge', num_groups=8, se_module='scse', **kwargs):
        super(ResNetBlockSE, self).__init__(
            in_channels, out_channels, kernel_size=kernel_size, order=order,
            num_groups=num_groups, **kwargs)
        assert se_module in ['scse', 'cse', 'sse']
        if se_module == 'scse':
            self.se_module = ChannelSpatialSELayer3D(num_channels=out_channels, reduction_ratio=1)
        elif se_module == 'cse':
            self.se_module = ChannelSELayer3D(num_channels=out_channels, reduction_ratio=1)
        elif se_module == 'sse':
            self.se_module = SpatialSELayer3D(num_channels=out_channels)

    def forward(self, x):
        out = super().forward(x)
        out = self.se_module(out)
        return out


class Encoder(nn.Module):
    """
    A single module from the encoder path consisting of the optional max
    pooling layer (one may specify the MaxPool kernel_size to be different
    from the standard (2,2,2), e.g. if the volumetric data is anisotropic
    (make sure to use complementary scale_factor in the decoder path) followed by
    a basic module (DoubleConv or ResNetBlock).

    Args:
        in_channels (int): number of input channels
        out_channels (int): number of output channels
        conv_kernel_size (int or tuple): size of the convolving kernel
        apply_pooling (bool): if True use MaxPool3d before DoubleConv
        pool_kernel_size (int or tuple): the size of the window
        pool_type (str): pooling layer: 'max' or 'avg'
        basic_module(nn.Module): either ResNetBlock or DoubleConv
        conv_layer_order (string): determines the order of layers
            in `DoubleConv` module. See `DoubleConv` for more info.
        num_groups (int): number of groups for the GroupNorm
        padding (int or tuple): add zero-padding added to all three sides of the input
        is3d (bool): use 3d or 2d convolutions/pooling operation
    """

    def __init__(self, in_channels, out_channels, conv_kernel_size=3, apply_pooling=True,
                 pool_kernel_size=2, pool_type='max', basic_module=DoubleConv, conv_layer_order='gcr',
                 num_groups=8, padding=1, is3d=True):
        super(Encoder, self).__init__()
        assert pool_type in ['max', 'avg']
        if apply_pooling:
            if pool_type == 'max':
                if is3d:
                    self.pooling = nn.MaxPool3d(kernel_size=pool_kernel_size)
                else:
                    self.pooling = nn.MaxPool2d(kernel_size=pool_kernel_size)
            else:
                if is3d:
                    self.pooling = nn.AvgPool3d(kernel_size=pool_kernel_size)
                else:
                    self.pooling = nn.AvgPool2d(kernel_size=pool_kernel_size)
        else:
            self.pooling = None

        self.basic_module = basic_module(in_channels, out_channels,
                                         encoder=True,
                                         kernel_size=conv_kernel_size,
                                         order=conv_layer_order,
                                         num_groups=num_groups,
                                         padding=padding,
                                         is3d=is3d)

    def forward(self, x):
        if self.pooling is not None:
            x = self.pooling(x)
        x = self.basic_module(x)
        return x


class Decoder(nn.Module):
    """
    A single module for decoder path consisting of the upsampling layer
    (either learned ConvTranspose3d or nearest neighbor interpolation)
    followed by a basic module (DoubleConv or ResNetBlock).

    Args:
        in_channels (int): number of input channels
        out_channels (int): number of output channels
        conv_kernel_size (int or tuple): size of the convolving kernel
        scale_factor (tuple): used as the multiplier for the image H/W/D in
            case of nn.Upsample or as stride in case of ConvTranspose3d, must reverse the MaxPool3d operation
            from the corresponding encoder
        basic_module(nn.Module): either ResNetBlock or DoubleConv
        conv_layer_order (string): determines the order of layers
            in `DoubleConv` module. See `DoubleConv` for more info.
        num_groups (int): number of groups for the GroupNorm
        padding (int or tuple): add zero-padding added to all three sides of the input
        upsample (bool): should the input be upsampled
    """

    def __init__(self, in_channels, out_channels, conv_kernel_size=3, scale_factor=(2, 2, 2), basic_module=DoubleConv,
                 conv_layer_order='gcr', num_groups=8, mode='nearest', padding=1, upsample=True, is3d=True):
        super(Decoder, self).__init__()

        if upsample:
            if basic_module == DoubleConv:
                # if DoubleConv is the basic_module use interpolation for upsampling and concatenation joining
                self.upsampling = InterpolateUpsampling(mode=mode)
                # concat joining
                self.joining = partial(self._joining, concat=True)
            else:
                # if basic_module=ResNetBlock use transposed convolution upsampling and summation joining
                self.upsampling = TransposeConvUpsampling(in_channels=in_channels, out_channels=out_channels,
                                                          kernel_size=conv_kernel_size, scale_factor=scale_factor)
                # sum joining
                self.joining = partial(self._joining, concat=False)
                # adapt the number of in_channels for the ResNetBlock
                in_channels = out_channels
        else:
            # no upsampling
            self.upsampling = NoUpsampling()
            # concat joining
            self.joining = partial(self._joining, concat=True)

        self.basic_module = basic_module(in_channels, out_channels,
                                         encoder=False,
                                         kernel_size=conv_kernel_size,
                                         order=conv_layer_order,
                                         num_groups=num_groups,
                                         padding=padding,
                                         is3d=is3d)

    def forward(self, encoder_features, x):
        x = self.upsampling(encoder_features=encoder_features, x=x)
        x = self.joining(encoder_features, x)
        ipdb.set_trace()
        x = self.basic_module(x)
        return x

    @staticmethod
    def _joining(encoder_features, x, concat):
        if concat:
            return torch.cat((encoder_features, x), dim=1)
        else:
            return encoder_features + x


def create_encoders(in_channels, f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, num_groups,
                    pool_kernel_size, is3d):
    # create encoder path consisting of Encoder modules. Depth of the encoder is equal to `len(f_maps)`
    encoders = []
    for i, out_feature_num in enumerate(f_maps):
        if i == 0:
            # apply conv_coord only in the first encoder if any
            encoder = Encoder(in_channels, out_feature_num,
                              apply_pooling=False,  # skip pooling in the firs encoder
                              basic_module=basic_module,
                              conv_layer_order=layer_order,
                              conv_kernel_size=conv_kernel_size,
                              num_groups=num_groups,
                              padding=conv_padding,
                              is3d=is3d)
        else:
            encoder = Encoder(f_maps[i - 1], out_feature_num,
                              basic_module=basic_module,
                              conv_layer_order=layer_order,
                              conv_kernel_size=conv_kernel_size,
                              num_groups=num_groups,
                              pool_kernel_size=pool_kernel_size,
                              padding=conv_padding,
                              is3d=is3d)

        encoders.append(encoder)

    return nn.ModuleList(encoders)


def create_decoders(f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, num_groups, is3d):
    # create decoder path consisting of the Decoder modules. The length of the decoder list is equal to `len(f_maps) - 1`
    decoders = []
    reversed_f_maps = list(reversed(f_maps))
    for i in range(len(reversed_f_maps) - 1):
        if basic_module == DoubleConv:
            in_feature_num = reversed_f_maps[i] + reversed_f_maps[i + 1]
        else:
            in_feature_num = reversed_f_maps[i]

        out_feature_num = reversed_f_maps[i + 1]

        decoder = Decoder(in_feature_num, out_feature_num,
                          basic_module=basic_module,
                          conv_layer_order=layer_order,
                          conv_kernel_size=conv_kernel_size,
                          num_groups=num_groups,
                          padding=conv_padding,
                          is3d=is3d)
        decoders.append(decoder)
    return nn.ModuleList(decoders)


class AbstractUpsampling(nn.Module):
    """
    Abstract class for upsampling. A given implementation should upsample a given 5D input tensor using either
    interpolation or learned transposed convolution.
    """

    def __init__(self, upsample):
        super(AbstractUpsampling, self).__init__()
        self.upsample = upsample

    def forward(self, encoder_features, x):
        # get the spatial dimensions of the output given the encoder_features
        output_size = encoder_features.size()[2:]
        # upsample the input and return
        return self.upsample(x, output_size)


class InterpolateUpsampling(AbstractUpsampling):
    """
    Args:
        mode (str): algorithm used for upsampling:
            'nearest' | 'linear' | 'bilinear' | 'trilinear' | 'area'. Default: 'nearest'
            used only if transposed_conv is False
    """

    def __init__(self, mode='nearest'):
        upsample = partial(self._interpolate, mode=mode)
        super().__init__(upsample)

    @staticmethod
    def _interpolate(x, size, mode):
        return F.interpolate(x, size=size, mode=mode)


class TransposeConvUpsampling(AbstractUpsampling):
    """
    Args:
        in_channels (int): number of input channels for transposed conv
            used only if transposed_conv is True
        out_channels (int): number of output channels for transpose conv
            used only if transposed_conv is True
        kernel_size (int or tuple): size of the convolving kernel
            used only if transposed_conv is True
        scale_factor (int or tuple): stride of the convolution
            used only if transposed_conv is True

    """

    def __init__(self, in_channels=None, out_channels=None, kernel_size=3, scale_factor=(2, 2, 2)):
        # make sure that the output size reverses the MaxPool3d from the corresponding encoder
        upsample = nn.ConvTranspose3d(in_channels, out_channels, kernel_size=kernel_size, stride=scale_factor,
                                      padding=1)
        super().__init__(upsample)


class NoUpsampling(AbstractUpsampling):
    def __init__(self):
        super().__init__(self._no_upsampling)

    @staticmethod
    def _no_upsampling(x, size):
        return x