File size: 20,128 Bytes
cca9b7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
from functools import partial
import torch
from torch import nn as nn
from torch.nn import functional as F
from medomni.models.unet3d.se import ChannelSELayer3D, ChannelSpatialSELayer3D, SpatialSELayer3D
import ipdb
def create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding, is3d):
"""
Create a list of modules with together constitute a single conv layer with non-linearity
and optional batchnorm/groupnorm.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size(int or tuple): size of the convolving kernel
order (string): order of things, e.g.
'cr' -> conv + ReLU
'gcr' -> groupnorm + conv + ReLU
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
'bcr' -> batchnorm + conv + ReLU
num_groups (int): number of groups for the GroupNorm
padding (int or tuple): add zero-padding added to all three sides of the input
is3d (bool): is3d (bool): if True use Conv3d, otherwise use Conv2d
Return:
list of tuple (name, module)
"""
assert 'c' in order, "Conv layer MUST be present"
assert order[0] not in 'rle', 'Non-linearity cannot be the first operation in the layer'
modules = []
for i, char in enumerate(order):
if char == 'r':
modules.append(('ReLU', nn.ReLU(inplace=True)))
elif char == 'l':
modules.append(('LeakyReLU', nn.LeakyReLU(inplace=True)))
elif char == 'e':
modules.append(('ELU', nn.ELU(inplace=True)))
elif char == 'c':
# add learnable bias only in the absence of batchnorm/groupnorm
bias = not ('g' in order or 'b' in order)
if is3d:
conv = nn.Conv3d(in_channels, out_channels, kernel_size, padding=padding, bias=bias)
else:
conv = nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding, bias=bias)
modules.append(('conv', conv))
elif char == 'g':
is_before_conv = i < order.index('c')
if is_before_conv:
num_channels = in_channels
else:
num_channels = out_channels
# use only one group if the given number of groups is greater than the number of channels
if num_channels < num_groups:
num_groups = 1
assert num_channels % num_groups == 0, f'Expected number of channels in input to be divisible by num_groups. num_channels={num_channels}, num_groups={num_groups}'
modules.append(('groupnorm', nn.GroupNorm(num_groups=num_groups, num_channels=num_channels)))
elif char == 'b':
is_before_conv = i < order.index('c')
if is3d:
bn = nn.BatchNorm3d
else:
bn = nn.BatchNorm2d
if is_before_conv:
modules.append(('batchnorm', bn(in_channels)))
else:
modules.append(('batchnorm', bn(out_channels)))
else:
raise ValueError(f"Unsupported layer type '{char}'. MUST be one of ['b', 'g', 'r', 'l', 'e', 'c']")
return modules
class SingleConv(nn.Sequential):
"""
Basic convolutional module consisting of a Conv3d, non-linearity and optional batchnorm/groupnorm. The order
of operations can be specified via the `order` parameter
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size (int or tuple): size of the convolving kernel
order (string): determines the order of layers, e.g.
'cr' -> conv + ReLU
'crg' -> conv + ReLU + groupnorm
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
num_groups (int): number of groups for the GroupNorm
padding (int or tuple): add zero-padding
is3d (bool): if True use Conv3d, otherwise use Conv2d
"""
def __init__(self, in_channels, out_channels, kernel_size=3, order='gcr', num_groups=8, padding=1, is3d=True):
super(SingleConv, self).__init__()
for name, module in create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding, is3d):
self.add_module(name, module)
class DoubleConv(nn.Sequential):
"""
A module consisting of two consecutive convolution layers (e.g. BatchNorm3d+ReLU+Conv3d).
We use (Conv3d+ReLU+GroupNorm3d) by default.
This can be changed however by providing the 'order' argument, e.g. in order
to change to Conv3d+BatchNorm3d+ELU use order='cbe'.
Use padded convolutions to make sure that the output (H_out, W_out) is the same
as (H_in, W_in), so that you don't have to crop in the decoder path.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
encoder (bool): if True we're in the encoder path, otherwise we're in the decoder
kernel_size (int or tuple): size of the convolving kernel
order (string): determines the order of layers, e.g.
'cr' -> conv + ReLU
'crg' -> conv + ReLU + groupnorm
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
num_groups (int): number of groups for the GroupNorm
padding (int or tuple): add zero-padding added to all three sides of the input
is3d (bool): if True use Conv3d instead of Conv2d layers
"""
def __init__(self, in_channels, out_channels, encoder, kernel_size=3, order='gcr', num_groups=8, padding=1,
is3d=True):
super(DoubleConv, self).__init__()
if encoder:
# we're in the encoder path
conv1_in_channels = in_channels
conv1_out_channels = out_channels // 2
if conv1_out_channels < in_channels:
conv1_out_channels = in_channels
conv2_in_channels, conv2_out_channels = conv1_out_channels, out_channels
else:
# we're in the decoder path, decrease the number of channels in the 1st convolution
conv1_in_channels, conv1_out_channels = in_channels, out_channels
conv2_in_channels, conv2_out_channels = out_channels, out_channels
# conv1
self.add_module('SingleConv1',
SingleConv(conv1_in_channels, conv1_out_channels, kernel_size, order, num_groups,
padding=padding, is3d=is3d))
# conv2
self.add_module('SingleConv2',
SingleConv(conv2_in_channels, conv2_out_channels, kernel_size, order, num_groups,
padding=padding, is3d=is3d))
class ResNetBlock(nn.Module):
"""
Residual block that can be used instead of standard DoubleConv in the Encoder module.
Motivated by: https://arxiv.org/pdf/1706.00120.pdf
Notice we use ELU instead of ReLU (order='cge') and put non-linearity after the groupnorm.
"""
def __init__(self, in_channels, out_channels, kernel_size=3, order='cge', num_groups=8, is3d=True, **kwargs):
super(ResNetBlock, self).__init__()
if in_channels != out_channels:
# conv1x1 for increasing the number of channels
if is3d:
self.conv1 = nn.Conv3d(in_channels, out_channels, 1)
else:
self.conv1 = nn.Conv2d(in_channels, out_channels, 1)
else:
self.conv1 = nn.Identity()
# residual block
self.conv2 = SingleConv(out_channels, out_channels, kernel_size=kernel_size, order=order, num_groups=num_groups,
is3d=is3d)
# remove non-linearity from the 3rd convolution since it's going to be applied after adding the residual
n_order = order
for c in 'rel':
n_order = n_order.replace(c, '')
self.conv3 = SingleConv(out_channels, out_channels, kernel_size=kernel_size, order=n_order,
num_groups=num_groups, is3d=is3d)
# create non-linearity separately
if 'l' in order:
self.non_linearity = nn.LeakyReLU(negative_slope=0.1, inplace=True)
elif 'e' in order:
self.non_linearity = nn.ELU(inplace=True)
else:
self.non_linearity = nn.ReLU(inplace=True)
def forward(self, x):
# apply first convolution to bring the number of channels to out_channels
residual = self.conv1(x)
# residual block
out = self.conv2(residual)
out = self.conv3(out)
out += residual
out = self.non_linearity(out)
return out
class ResNetBlockSE(ResNetBlock):
def __init__(self, in_channels, out_channels, kernel_size=3, order='cge', num_groups=8, se_module='scse', **kwargs):
super(ResNetBlockSE, self).__init__(
in_channels, out_channels, kernel_size=kernel_size, order=order,
num_groups=num_groups, **kwargs)
assert se_module in ['scse', 'cse', 'sse']
if se_module == 'scse':
self.se_module = ChannelSpatialSELayer3D(num_channels=out_channels, reduction_ratio=1)
elif se_module == 'cse':
self.se_module = ChannelSELayer3D(num_channels=out_channels, reduction_ratio=1)
elif se_module == 'sse':
self.se_module = SpatialSELayer3D(num_channels=out_channels)
def forward(self, x):
out = super().forward(x)
out = self.se_module(out)
return out
class Encoder(nn.Module):
"""
A single module from the encoder path consisting of the optional max
pooling layer (one may specify the MaxPool kernel_size to be different
from the standard (2,2,2), e.g. if the volumetric data is anisotropic
(make sure to use complementary scale_factor in the decoder path) followed by
a basic module (DoubleConv or ResNetBlock).
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
conv_kernel_size (int or tuple): size of the convolving kernel
apply_pooling (bool): if True use MaxPool3d before DoubleConv
pool_kernel_size (int or tuple): the size of the window
pool_type (str): pooling layer: 'max' or 'avg'
basic_module(nn.Module): either ResNetBlock or DoubleConv
conv_layer_order (string): determines the order of layers
in `DoubleConv` module. See `DoubleConv` for more info.
num_groups (int): number of groups for the GroupNorm
padding (int or tuple): add zero-padding added to all three sides of the input
is3d (bool): use 3d or 2d convolutions/pooling operation
"""
def __init__(self, in_channels, out_channels, conv_kernel_size=3, apply_pooling=True,
pool_kernel_size=2, pool_type='max', basic_module=DoubleConv, conv_layer_order='gcr',
num_groups=8, padding=1, is3d=True):
super(Encoder, self).__init__()
assert pool_type in ['max', 'avg']
if apply_pooling:
if pool_type == 'max':
if is3d:
self.pooling = nn.MaxPool3d(kernel_size=pool_kernel_size)
else:
self.pooling = nn.MaxPool2d(kernel_size=pool_kernel_size)
else:
if is3d:
self.pooling = nn.AvgPool3d(kernel_size=pool_kernel_size)
else:
self.pooling = nn.AvgPool2d(kernel_size=pool_kernel_size)
else:
self.pooling = None
self.basic_module = basic_module(in_channels, out_channels,
encoder=True,
kernel_size=conv_kernel_size,
order=conv_layer_order,
num_groups=num_groups,
padding=padding,
is3d=is3d)
def forward(self, x):
if self.pooling is not None:
x = self.pooling(x)
x = self.basic_module(x)
return x
class Decoder(nn.Module):
"""
A single module for decoder path consisting of the upsampling layer
(either learned ConvTranspose3d or nearest neighbor interpolation)
followed by a basic module (DoubleConv or ResNetBlock).
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
conv_kernel_size (int or tuple): size of the convolving kernel
scale_factor (tuple): used as the multiplier for the image H/W/D in
case of nn.Upsample or as stride in case of ConvTranspose3d, must reverse the MaxPool3d operation
from the corresponding encoder
basic_module(nn.Module): either ResNetBlock or DoubleConv
conv_layer_order (string): determines the order of layers
in `DoubleConv` module. See `DoubleConv` for more info.
num_groups (int): number of groups for the GroupNorm
padding (int or tuple): add zero-padding added to all three sides of the input
upsample (bool): should the input be upsampled
"""
def __init__(self, in_channels, out_channels, conv_kernel_size=3, scale_factor=(2, 2, 2), basic_module=DoubleConv,
conv_layer_order='gcr', num_groups=8, mode='nearest', padding=1, upsample=True, is3d=True):
super(Decoder, self).__init__()
if upsample:
if basic_module == DoubleConv:
# if DoubleConv is the basic_module use interpolation for upsampling and concatenation joining
self.upsampling = InterpolateUpsampling(mode=mode)
# concat joining
self.joining = partial(self._joining, concat=True)
else:
# if basic_module=ResNetBlock use transposed convolution upsampling and summation joining
self.upsampling = TransposeConvUpsampling(in_channels=in_channels, out_channels=out_channels,
kernel_size=conv_kernel_size, scale_factor=scale_factor)
# sum joining
self.joining = partial(self._joining, concat=False)
# adapt the number of in_channels for the ResNetBlock
in_channels = out_channels
else:
# no upsampling
self.upsampling = NoUpsampling()
# concat joining
self.joining = partial(self._joining, concat=True)
self.basic_module = basic_module(in_channels, out_channels,
encoder=False,
kernel_size=conv_kernel_size,
order=conv_layer_order,
num_groups=num_groups,
padding=padding,
is3d=is3d)
def forward(self, encoder_features, x):
x = self.upsampling(encoder_features=encoder_features, x=x)
x = self.joining(encoder_features, x)
ipdb.set_trace()
x = self.basic_module(x)
return x
@staticmethod
def _joining(encoder_features, x, concat):
if concat:
return torch.cat((encoder_features, x), dim=1)
else:
return encoder_features + x
def create_encoders(in_channels, f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, num_groups,
pool_kernel_size, is3d):
# create encoder path consisting of Encoder modules. Depth of the encoder is equal to `len(f_maps)`
encoders = []
for i, out_feature_num in enumerate(f_maps):
if i == 0:
# apply conv_coord only in the first encoder if any
encoder = Encoder(in_channels, out_feature_num,
apply_pooling=False, # skip pooling in the firs encoder
basic_module=basic_module,
conv_layer_order=layer_order,
conv_kernel_size=conv_kernel_size,
num_groups=num_groups,
padding=conv_padding,
is3d=is3d)
else:
encoder = Encoder(f_maps[i - 1], out_feature_num,
basic_module=basic_module,
conv_layer_order=layer_order,
conv_kernel_size=conv_kernel_size,
num_groups=num_groups,
pool_kernel_size=pool_kernel_size,
padding=conv_padding,
is3d=is3d)
encoders.append(encoder)
return nn.ModuleList(encoders)
def create_decoders(f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, num_groups, is3d):
# create decoder path consisting of the Decoder modules. The length of the decoder list is equal to `len(f_maps) - 1`
decoders = []
reversed_f_maps = list(reversed(f_maps))
for i in range(len(reversed_f_maps) - 1):
if basic_module == DoubleConv:
in_feature_num = reversed_f_maps[i] + reversed_f_maps[i + 1]
else:
in_feature_num = reversed_f_maps[i]
out_feature_num = reversed_f_maps[i + 1]
decoder = Decoder(in_feature_num, out_feature_num,
basic_module=basic_module,
conv_layer_order=layer_order,
conv_kernel_size=conv_kernel_size,
num_groups=num_groups,
padding=conv_padding,
is3d=is3d)
decoders.append(decoder)
return nn.ModuleList(decoders)
class AbstractUpsampling(nn.Module):
"""
Abstract class for upsampling. A given implementation should upsample a given 5D input tensor using either
interpolation or learned transposed convolution.
"""
def __init__(self, upsample):
super(AbstractUpsampling, self).__init__()
self.upsample = upsample
def forward(self, encoder_features, x):
# get the spatial dimensions of the output given the encoder_features
output_size = encoder_features.size()[2:]
# upsample the input and return
return self.upsample(x, output_size)
class InterpolateUpsampling(AbstractUpsampling):
"""
Args:
mode (str): algorithm used for upsampling:
'nearest' | 'linear' | 'bilinear' | 'trilinear' | 'area'. Default: 'nearest'
used only if transposed_conv is False
"""
def __init__(self, mode='nearest'):
upsample = partial(self._interpolate, mode=mode)
super().__init__(upsample)
@staticmethod
def _interpolate(x, size, mode):
return F.interpolate(x, size=size, mode=mode)
class TransposeConvUpsampling(AbstractUpsampling):
"""
Args:
in_channels (int): number of input channels for transposed conv
used only if transposed_conv is True
out_channels (int): number of output channels for transpose conv
used only if transposed_conv is True
kernel_size (int or tuple): size of the convolving kernel
used only if transposed_conv is True
scale_factor (int or tuple): stride of the convolution
used only if transposed_conv is True
"""
def __init__(self, in_channels=None, out_channels=None, kernel_size=3, scale_factor=(2, 2, 2)):
# make sure that the output size reverses the MaxPool3d from the corresponding encoder
upsample = nn.ConvTranspose3d(in_channels, out_channels, kernel_size=kernel_size, stride=scale_factor,
padding=1)
super().__init__(upsample)
class NoUpsampling(AbstractUpsampling):
def __init__(self):
super().__init__(self._no_upsampling)
@staticmethod
def _no_upsampling(x, size):
return x
|