Upload pipeline.py
Browse files- pipeline.py +1783 -0
pipeline.py
ADDED
@@ -0,0 +1,1783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Implementation of Stable Diffusion Inpaint Pipeline with Perturbed-Attention Guidance
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import PIL.Image
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from packaging import version
|
11 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
12 |
+
|
13 |
+
from diffusers.configuration_utils import FrozenDict
|
14 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
15 |
+
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
16 |
+
from diffusers.models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel
|
17 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
18 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
19 |
+
from diffusers.utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
20 |
+
from diffusers.utils.torch_utils import randn_tensor
|
21 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
22 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
23 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
24 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
28 |
+
|
29 |
+
class PAGIdentitySelfAttnProcessor:
|
30 |
+
r"""
|
31 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self):
|
35 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
36 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
37 |
+
|
38 |
+
def __call__(
|
39 |
+
self,
|
40 |
+
attn: Attention,
|
41 |
+
hidden_states: torch.FloatTensor,
|
42 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
43 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
44 |
+
temb: Optional[torch.FloatTensor] = None,
|
45 |
+
*args,
|
46 |
+
**kwargs,
|
47 |
+
) -> torch.FloatTensor:
|
48 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
49 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
50 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
51 |
+
|
52 |
+
residual = hidden_states
|
53 |
+
if attn.spatial_norm is not None:
|
54 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
55 |
+
|
56 |
+
input_ndim = hidden_states.ndim
|
57 |
+
if input_ndim == 4:
|
58 |
+
batch_size, channel, height, width = hidden_states.shape
|
59 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
60 |
+
|
61 |
+
# chunk
|
62 |
+
hidden_states_org, hidden_states_ptb = hidden_states.chunk(2)
|
63 |
+
|
64 |
+
# original path
|
65 |
+
batch_size, sequence_length, _ = hidden_states_org.shape
|
66 |
+
|
67 |
+
if attention_mask is not None:
|
68 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
69 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
70 |
+
# (batch, heads, source_length, target_length)
|
71 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
72 |
+
|
73 |
+
if attn.group_norm is not None:
|
74 |
+
hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)
|
75 |
+
|
76 |
+
query = attn.to_q(hidden_states_org)
|
77 |
+
key = attn.to_k(hidden_states_org)
|
78 |
+
value = attn.to_v(hidden_states_org)
|
79 |
+
|
80 |
+
inner_dim = key.shape[-1]
|
81 |
+
head_dim = inner_dim // attn.heads
|
82 |
+
|
83 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
84 |
+
|
85 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
86 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
87 |
+
|
88 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
89 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
90 |
+
hidden_states_org = F.scaled_dot_product_attention(
|
91 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
92 |
+
)
|
93 |
+
|
94 |
+
hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
95 |
+
hidden_states_org = hidden_states_org.to(query.dtype)
|
96 |
+
|
97 |
+
# linear proj
|
98 |
+
hidden_states_org = attn.to_out[0](hidden_states_org)
|
99 |
+
# dropout
|
100 |
+
hidden_states_org = attn.to_out[1](hidden_states_org)
|
101 |
+
|
102 |
+
if input_ndim == 4:
|
103 |
+
hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
104 |
+
|
105 |
+
# perturbed path (identity attention)
|
106 |
+
batch_size, sequence_length, _ = hidden_states_ptb.shape
|
107 |
+
|
108 |
+
if attention_mask is not None:
|
109 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
110 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
111 |
+
# (batch, heads, source_length, target_length)
|
112 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
113 |
+
|
114 |
+
if attn.group_norm is not None:
|
115 |
+
hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)
|
116 |
+
|
117 |
+
value = attn.to_v(hidden_states_ptb)
|
118 |
+
|
119 |
+
hidden_states_ptb = torch.zeros(value.shape).to(value.get_device())
|
120 |
+
# hidden_states_ptb = value
|
121 |
+
|
122 |
+
hidden_states_ptb = hidden_states_ptb.to(query.dtype)
|
123 |
+
|
124 |
+
# linear proj
|
125 |
+
hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
|
126 |
+
# dropout
|
127 |
+
hidden_states_ptb = attn.to_out[1](hidden_states_ptb)
|
128 |
+
|
129 |
+
if input_ndim == 4:
|
130 |
+
hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
131 |
+
|
132 |
+
# cat
|
133 |
+
hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
|
134 |
+
|
135 |
+
if attn.residual_connection:
|
136 |
+
hidden_states = hidden_states + residual
|
137 |
+
|
138 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
139 |
+
|
140 |
+
return hidden_states
|
141 |
+
|
142 |
+
|
143 |
+
class PAGCFGIdentitySelfAttnProcessor:
|
144 |
+
r"""
|
145 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
146 |
+
"""
|
147 |
+
|
148 |
+
def __init__(self):
|
149 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
150 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
151 |
+
|
152 |
+
def __call__(
|
153 |
+
self,
|
154 |
+
attn: Attention,
|
155 |
+
hidden_states: torch.FloatTensor,
|
156 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
157 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
158 |
+
temb: Optional[torch.FloatTensor] = None,
|
159 |
+
*args,
|
160 |
+
**kwargs,
|
161 |
+
) -> torch.FloatTensor:
|
162 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
163 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
164 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
165 |
+
|
166 |
+
residual = hidden_states
|
167 |
+
if attn.spatial_norm is not None:
|
168 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
169 |
+
|
170 |
+
input_ndim = hidden_states.ndim
|
171 |
+
if input_ndim == 4:
|
172 |
+
batch_size, channel, height, width = hidden_states.shape
|
173 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
174 |
+
|
175 |
+
# chunk
|
176 |
+
hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3)
|
177 |
+
hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org])
|
178 |
+
|
179 |
+
# original path
|
180 |
+
batch_size, sequence_length, _ = hidden_states_org.shape
|
181 |
+
|
182 |
+
if attention_mask is not None:
|
183 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
184 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
185 |
+
# (batch, heads, source_length, target_length)
|
186 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
187 |
+
|
188 |
+
if attn.group_norm is not None:
|
189 |
+
hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)
|
190 |
+
|
191 |
+
query = attn.to_q(hidden_states_org)
|
192 |
+
key = attn.to_k(hidden_states_org)
|
193 |
+
value = attn.to_v(hidden_states_org)
|
194 |
+
|
195 |
+
inner_dim = key.shape[-1]
|
196 |
+
head_dim = inner_dim // attn.heads
|
197 |
+
|
198 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
199 |
+
|
200 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
201 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
202 |
+
|
203 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
204 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
205 |
+
hidden_states_org = F.scaled_dot_product_attention(
|
206 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
207 |
+
)
|
208 |
+
|
209 |
+
hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
210 |
+
hidden_states_org = hidden_states_org.to(query.dtype)
|
211 |
+
|
212 |
+
# linear proj
|
213 |
+
hidden_states_org = attn.to_out[0](hidden_states_org)
|
214 |
+
# dropout
|
215 |
+
hidden_states_org = attn.to_out[1](hidden_states_org)
|
216 |
+
|
217 |
+
if input_ndim == 4:
|
218 |
+
hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
219 |
+
|
220 |
+
# perturbed path (identity attention)
|
221 |
+
batch_size, sequence_length, _ = hidden_states_ptb.shape
|
222 |
+
|
223 |
+
if attention_mask is not None:
|
224 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
225 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
226 |
+
# (batch, heads, source_length, target_length)
|
227 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
228 |
+
|
229 |
+
if attn.group_norm is not None:
|
230 |
+
hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)
|
231 |
+
|
232 |
+
value = attn.to_v(hidden_states_ptb)
|
233 |
+
hidden_states_ptb = value
|
234 |
+
hidden_states_ptb = hidden_states_ptb.to(query.dtype)
|
235 |
+
|
236 |
+
# linear proj
|
237 |
+
hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
|
238 |
+
# dropout
|
239 |
+
hidden_states_ptb = attn.to_out[1](hidden_states_ptb)
|
240 |
+
|
241 |
+
if input_ndim == 4:
|
242 |
+
hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
243 |
+
|
244 |
+
# cat
|
245 |
+
hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
|
246 |
+
|
247 |
+
if attn.residual_connection:
|
248 |
+
hidden_states = hidden_states + residual
|
249 |
+
|
250 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
251 |
+
|
252 |
+
return hidden_states
|
253 |
+
|
254 |
+
|
255 |
+
def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
|
256 |
+
"""
|
257 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
258 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
259 |
+
``image`` and ``1`` for the ``mask``.
|
260 |
+
|
261 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
262 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
266 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
267 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
268 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
269 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
270 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
271 |
+
|
272 |
+
|
273 |
+
Raises:
|
274 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
275 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
276 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
277 |
+
(ot the other way around).
|
278 |
+
|
279 |
+
Returns:
|
280 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
281 |
+
dimensions: ``batch x channels x height x width``.
|
282 |
+
"""
|
283 |
+
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
|
284 |
+
deprecate(
|
285 |
+
"prepare_mask_and_masked_image",
|
286 |
+
"0.30.0",
|
287 |
+
deprecation_message,
|
288 |
+
)
|
289 |
+
if image is None:
|
290 |
+
raise ValueError("`image` input cannot be undefined.")
|
291 |
+
|
292 |
+
if mask is None:
|
293 |
+
raise ValueError("`mask_image` input cannot be undefined.")
|
294 |
+
|
295 |
+
if isinstance(image, torch.Tensor):
|
296 |
+
if not isinstance(mask, torch.Tensor):
|
297 |
+
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
|
298 |
+
|
299 |
+
# Batch single image
|
300 |
+
if image.ndim == 3:
|
301 |
+
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
302 |
+
image = image.unsqueeze(0)
|
303 |
+
|
304 |
+
# Batch and add channel dim for single mask
|
305 |
+
if mask.ndim == 2:
|
306 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
307 |
+
|
308 |
+
# Batch single mask or add channel dim
|
309 |
+
if mask.ndim == 3:
|
310 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
311 |
+
if mask.shape[0] == 1:
|
312 |
+
mask = mask.unsqueeze(0)
|
313 |
+
|
314 |
+
# Batched masks no channel dim
|
315 |
+
else:
|
316 |
+
mask = mask.unsqueeze(1)
|
317 |
+
|
318 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
319 |
+
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
320 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
321 |
+
|
322 |
+
# Check image is in [-1, 1]
|
323 |
+
if image.min() < -1 or image.max() > 1:
|
324 |
+
raise ValueError("Image should be in [-1, 1] range")
|
325 |
+
|
326 |
+
# Check mask is in [0, 1]
|
327 |
+
if mask.min() < 0 or mask.max() > 1:
|
328 |
+
raise ValueError("Mask should be in [0, 1] range")
|
329 |
+
|
330 |
+
# Binarize mask
|
331 |
+
mask[mask < 0.5] = 0
|
332 |
+
mask[mask >= 0.5] = 1
|
333 |
+
|
334 |
+
# Image as float32
|
335 |
+
image = image.to(dtype=torch.float32)
|
336 |
+
elif isinstance(mask, torch.Tensor):
|
337 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
338 |
+
else:
|
339 |
+
# preprocess image
|
340 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
341 |
+
image = [image]
|
342 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
343 |
+
# resize all images w.r.t passed height an width
|
344 |
+
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
345 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
346 |
+
image = np.concatenate(image, axis=0)
|
347 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
348 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
349 |
+
|
350 |
+
image = image.transpose(0, 3, 1, 2)
|
351 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
352 |
+
|
353 |
+
# preprocess mask
|
354 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
355 |
+
mask = [mask]
|
356 |
+
|
357 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
358 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
359 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
360 |
+
mask = mask.astype(np.float32) / 255.0
|
361 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
362 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
363 |
+
|
364 |
+
mask[mask < 0.5] = 0
|
365 |
+
mask[mask >= 0.5] = 1
|
366 |
+
mask = torch.from_numpy(mask)
|
367 |
+
|
368 |
+
masked_image = image * (mask < 0.5)
|
369 |
+
|
370 |
+
# n.b. ensure backwards compatibility as old function does not return image
|
371 |
+
if return_image:
|
372 |
+
return mask, masked_image, image
|
373 |
+
|
374 |
+
return mask, masked_image
|
375 |
+
|
376 |
+
|
377 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
378 |
+
def retrieve_latents(
|
379 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
380 |
+
):
|
381 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
382 |
+
return encoder_output.latent_dist.sample(generator)
|
383 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
384 |
+
return encoder_output.latent_dist.mode()
|
385 |
+
elif hasattr(encoder_output, "latents"):
|
386 |
+
return encoder_output.latents
|
387 |
+
else:
|
388 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
389 |
+
|
390 |
+
|
391 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
392 |
+
def retrieve_timesteps(
|
393 |
+
scheduler,
|
394 |
+
num_inference_steps: Optional[int] = None,
|
395 |
+
device: Optional[Union[str, torch.device]] = None,
|
396 |
+
timesteps: Optional[List[int]] = None,
|
397 |
+
**kwargs,
|
398 |
+
):
|
399 |
+
"""
|
400 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
401 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
402 |
+
|
403 |
+
Args:
|
404 |
+
scheduler (`SchedulerMixin`):
|
405 |
+
The scheduler to get timesteps from.
|
406 |
+
num_inference_steps (`int`):
|
407 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
408 |
+
must be `None`.
|
409 |
+
device (`str` or `torch.device`, *optional*):
|
410 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
411 |
+
timesteps (`List[int]`, *optional*):
|
412 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
413 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
414 |
+
must be `None`.
|
415 |
+
|
416 |
+
Returns:
|
417 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
418 |
+
second element is the number of inference steps.
|
419 |
+
"""
|
420 |
+
if timesteps is not None:
|
421 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
422 |
+
if not accepts_timesteps:
|
423 |
+
raise ValueError(
|
424 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
425 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
426 |
+
)
|
427 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
428 |
+
timesteps = scheduler.timesteps
|
429 |
+
num_inference_steps = len(timesteps)
|
430 |
+
else:
|
431 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
432 |
+
timesteps = scheduler.timesteps
|
433 |
+
return timesteps, num_inference_steps
|
434 |
+
|
435 |
+
|
436 |
+
class StableDiffusionInpaintPipeline(
|
437 |
+
DiffusionPipeline,
|
438 |
+
StableDiffusionMixin,
|
439 |
+
TextualInversionLoaderMixin,
|
440 |
+
IPAdapterMixin,
|
441 |
+
LoraLoaderMixin,
|
442 |
+
FromSingleFileMixin,
|
443 |
+
):
|
444 |
+
r"""
|
445 |
+
Pipeline for text-guided image inpainting using Stable Diffusion.
|
446 |
+
|
447 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
448 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
449 |
+
|
450 |
+
The pipeline also inherits the following loading methods:
|
451 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
452 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
453 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
454 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
455 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
456 |
+
|
457 |
+
Args:
|
458 |
+
vae ([`AutoencoderKL`, `AsymmetricAutoencoderKL`]):
|
459 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
460 |
+
text_encoder ([`CLIPTextModel`]):
|
461 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
462 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
463 |
+
A `CLIPTokenizer` to tokenize text.
|
464 |
+
unet ([`UNet2DConditionModel`]):
|
465 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
466 |
+
scheduler ([`SchedulerMixin`]):
|
467 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
468 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
469 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
470 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
471 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
472 |
+
about a model's potential harms.
|
473 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
474 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
475 |
+
"""
|
476 |
+
|
477 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
478 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
479 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
480 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "mask", "masked_image_latents"]
|
481 |
+
|
482 |
+
def __init__(
|
483 |
+
self,
|
484 |
+
vae: Union[AutoencoderKL, AsymmetricAutoencoderKL],
|
485 |
+
text_encoder: CLIPTextModel,
|
486 |
+
tokenizer: CLIPTokenizer,
|
487 |
+
unet: UNet2DConditionModel,
|
488 |
+
scheduler: KarrasDiffusionSchedulers,
|
489 |
+
safety_checker: StableDiffusionSafetyChecker,
|
490 |
+
feature_extractor: CLIPImageProcessor,
|
491 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
492 |
+
requires_safety_checker: bool = True,
|
493 |
+
):
|
494 |
+
super().__init__()
|
495 |
+
|
496 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
497 |
+
deprecation_message = (
|
498 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
499 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
500 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
501 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
502 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
503 |
+
" file"
|
504 |
+
)
|
505 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
506 |
+
new_config = dict(scheduler.config)
|
507 |
+
new_config["steps_offset"] = 1
|
508 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
509 |
+
|
510 |
+
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
|
511 |
+
deprecation_message = (
|
512 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration"
|
513 |
+
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
|
514 |
+
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
|
515 |
+
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
|
516 |
+
" Hub, it would be very nice if you could open a Pull request for the"
|
517 |
+
" `scheduler/scheduler_config.json` file"
|
518 |
+
)
|
519 |
+
deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False)
|
520 |
+
new_config = dict(scheduler.config)
|
521 |
+
new_config["skip_prk_steps"] = True
|
522 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
523 |
+
|
524 |
+
if safety_checker is None and requires_safety_checker:
|
525 |
+
logger.warning(
|
526 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
527 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
528 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
529 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
530 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
531 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
532 |
+
)
|
533 |
+
|
534 |
+
if safety_checker is not None and feature_extractor is None:
|
535 |
+
raise ValueError(
|
536 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
537 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
538 |
+
)
|
539 |
+
|
540 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
541 |
+
version.parse(unet.config._diffusers_version).base_version
|
542 |
+
) < version.parse("0.9.0.dev0")
|
543 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
544 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
545 |
+
deprecation_message = (
|
546 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
547 |
+
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
548 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
549 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
550 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
551 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
552 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
553 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
554 |
+
" the `unet/config.json` file"
|
555 |
+
)
|
556 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
557 |
+
new_config = dict(unet.config)
|
558 |
+
new_config["sample_size"] = 64
|
559 |
+
unet._internal_dict = FrozenDict(new_config)
|
560 |
+
|
561 |
+
# Check shapes, assume num_channels_latents == 4, num_channels_mask == 1, num_channels_masked == 4
|
562 |
+
if unet.config.in_channels != 9:
|
563 |
+
logger.info(f"You have loaded a UNet with {unet.config.in_channels} input channels which.")
|
564 |
+
|
565 |
+
self.register_modules(
|
566 |
+
vae=vae,
|
567 |
+
text_encoder=text_encoder,
|
568 |
+
tokenizer=tokenizer,
|
569 |
+
unet=unet,
|
570 |
+
scheduler=scheduler,
|
571 |
+
safety_checker=safety_checker,
|
572 |
+
feature_extractor=feature_extractor,
|
573 |
+
image_encoder=image_encoder,
|
574 |
+
)
|
575 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
576 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
577 |
+
self.mask_processor = VaeImageProcessor(
|
578 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
579 |
+
)
|
580 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
581 |
+
|
582 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
583 |
+
def _encode_prompt(
|
584 |
+
self,
|
585 |
+
prompt,
|
586 |
+
device,
|
587 |
+
num_images_per_prompt,
|
588 |
+
do_classifier_free_guidance,
|
589 |
+
negative_prompt=None,
|
590 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
591 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
592 |
+
lora_scale: Optional[float] = None,
|
593 |
+
**kwargs,
|
594 |
+
):
|
595 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
596 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
597 |
+
|
598 |
+
prompt_embeds_tuple = self.encode_prompt(
|
599 |
+
prompt=prompt,
|
600 |
+
device=device,
|
601 |
+
num_images_per_prompt=num_images_per_prompt,
|
602 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
603 |
+
negative_prompt=negative_prompt,
|
604 |
+
prompt_embeds=prompt_embeds,
|
605 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
606 |
+
lora_scale=lora_scale,
|
607 |
+
**kwargs,
|
608 |
+
)
|
609 |
+
|
610 |
+
# concatenate for backwards comp
|
611 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
612 |
+
|
613 |
+
return prompt_embeds
|
614 |
+
|
615 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
616 |
+
def encode_prompt(
|
617 |
+
self,
|
618 |
+
prompt,
|
619 |
+
device,
|
620 |
+
num_images_per_prompt,
|
621 |
+
do_classifier_free_guidance,
|
622 |
+
negative_prompt=None,
|
623 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
624 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
625 |
+
lora_scale: Optional[float] = None,
|
626 |
+
clip_skip: Optional[int] = None,
|
627 |
+
):
|
628 |
+
r"""
|
629 |
+
Encodes the prompt into text encoder hidden states.
|
630 |
+
|
631 |
+
Args:
|
632 |
+
prompt (`str` or `List[str]`, *optional*):
|
633 |
+
prompt to be encoded
|
634 |
+
device: (`torch.device`):
|
635 |
+
torch device
|
636 |
+
num_images_per_prompt (`int`):
|
637 |
+
number of images that should be generated per prompt
|
638 |
+
do_classifier_free_guidance (`bool`):
|
639 |
+
whether to use classifier free guidance or not
|
640 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
641 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
642 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
643 |
+
less than `1`).
|
644 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
645 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
646 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
647 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
648 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
649 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
650 |
+
argument.
|
651 |
+
lora_scale (`float`, *optional*):
|
652 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
653 |
+
clip_skip (`int`, *optional*):
|
654 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
655 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
656 |
+
"""
|
657 |
+
# set lora scale so that monkey patched LoRA
|
658 |
+
# function of text encoder can correctly access it
|
659 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
660 |
+
self._lora_scale = lora_scale
|
661 |
+
|
662 |
+
# dynamically adjust the LoRA scale
|
663 |
+
if not USE_PEFT_BACKEND:
|
664 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
665 |
+
else:
|
666 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
667 |
+
|
668 |
+
if prompt is not None and isinstance(prompt, str):
|
669 |
+
batch_size = 1
|
670 |
+
elif prompt is not None and isinstance(prompt, list):
|
671 |
+
batch_size = len(prompt)
|
672 |
+
else:
|
673 |
+
batch_size = prompt_embeds.shape[0]
|
674 |
+
|
675 |
+
if prompt_embeds is None:
|
676 |
+
# textual inversion: process multi-vector tokens if necessary
|
677 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
678 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
679 |
+
|
680 |
+
text_inputs = self.tokenizer(
|
681 |
+
prompt,
|
682 |
+
padding="max_length",
|
683 |
+
max_length=self.tokenizer.model_max_length,
|
684 |
+
truncation=True,
|
685 |
+
return_tensors="pt",
|
686 |
+
)
|
687 |
+
text_input_ids = text_inputs.input_ids
|
688 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
689 |
+
|
690 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
691 |
+
text_input_ids, untruncated_ids
|
692 |
+
):
|
693 |
+
removed_text = self.tokenizer.batch_decode(
|
694 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
695 |
+
)
|
696 |
+
logger.warning(
|
697 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
698 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
699 |
+
)
|
700 |
+
|
701 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
702 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
703 |
+
else:
|
704 |
+
attention_mask = None
|
705 |
+
|
706 |
+
if clip_skip is None:
|
707 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
708 |
+
prompt_embeds = prompt_embeds[0]
|
709 |
+
else:
|
710 |
+
prompt_embeds = self.text_encoder(
|
711 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
712 |
+
)
|
713 |
+
# Access the `hidden_states` first, that contains a tuple of
|
714 |
+
# all the hidden states from the encoder layers. Then index into
|
715 |
+
# the tuple to access the hidden states from the desired layer.
|
716 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
717 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
718 |
+
# representations. The `last_hidden_states` that we typically use for
|
719 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
720 |
+
# layer.
|
721 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
722 |
+
|
723 |
+
if self.text_encoder is not None:
|
724 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
725 |
+
elif self.unet is not None:
|
726 |
+
prompt_embeds_dtype = self.unet.dtype
|
727 |
+
else:
|
728 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
729 |
+
|
730 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
731 |
+
|
732 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
733 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
734 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
735 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
736 |
+
|
737 |
+
# get unconditional embeddings for classifier free guidance
|
738 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
739 |
+
uncond_tokens: List[str]
|
740 |
+
if negative_prompt is None:
|
741 |
+
uncond_tokens = [""] * batch_size
|
742 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
743 |
+
raise TypeError(
|
744 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
745 |
+
f" {type(prompt)}."
|
746 |
+
)
|
747 |
+
elif isinstance(negative_prompt, str):
|
748 |
+
uncond_tokens = [negative_prompt]
|
749 |
+
elif batch_size != len(negative_prompt):
|
750 |
+
raise ValueError(
|
751 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
752 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
753 |
+
" the batch size of `prompt`."
|
754 |
+
)
|
755 |
+
else:
|
756 |
+
uncond_tokens = negative_prompt
|
757 |
+
|
758 |
+
# textual inversion: process multi-vector tokens if necessary
|
759 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
760 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
761 |
+
|
762 |
+
max_length = prompt_embeds.shape[1]
|
763 |
+
uncond_input = self.tokenizer(
|
764 |
+
uncond_tokens,
|
765 |
+
padding="max_length",
|
766 |
+
max_length=max_length,
|
767 |
+
truncation=True,
|
768 |
+
return_tensors="pt",
|
769 |
+
)
|
770 |
+
|
771 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
772 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
773 |
+
else:
|
774 |
+
attention_mask = None
|
775 |
+
|
776 |
+
negative_prompt_embeds = self.text_encoder(
|
777 |
+
uncond_input.input_ids.to(device),
|
778 |
+
attention_mask=attention_mask,
|
779 |
+
)
|
780 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
781 |
+
|
782 |
+
if do_classifier_free_guidance:
|
783 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
784 |
+
seq_len = negative_prompt_embeds.shape[1]
|
785 |
+
|
786 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
787 |
+
|
788 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
789 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
790 |
+
|
791 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
792 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
793 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
794 |
+
|
795 |
+
return prompt_embeds, negative_prompt_embeds
|
796 |
+
|
797 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
798 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
799 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
800 |
+
|
801 |
+
if not isinstance(image, torch.Tensor):
|
802 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
803 |
+
|
804 |
+
image = image.to(device=device, dtype=dtype)
|
805 |
+
if output_hidden_states:
|
806 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
807 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
808 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
809 |
+
torch.zeros_like(image), output_hidden_states=True
|
810 |
+
).hidden_states[-2]
|
811 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
812 |
+
num_images_per_prompt, dim=0
|
813 |
+
)
|
814 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
815 |
+
else:
|
816 |
+
image_embeds = self.image_encoder(image).image_embeds
|
817 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
818 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
819 |
+
|
820 |
+
return image_embeds, uncond_image_embeds
|
821 |
+
|
822 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
823 |
+
def prepare_ip_adapter_image_embeds(
|
824 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
825 |
+
):
|
826 |
+
if ip_adapter_image_embeds is None:
|
827 |
+
if not isinstance(ip_adapter_image, list):
|
828 |
+
ip_adapter_image = [ip_adapter_image]
|
829 |
+
|
830 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
831 |
+
raise ValueError(
|
832 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
833 |
+
)
|
834 |
+
|
835 |
+
image_embeds = []
|
836 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
837 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
838 |
+
):
|
839 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
840 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
841 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
842 |
+
)
|
843 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
844 |
+
single_negative_image_embeds = torch.stack(
|
845 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
846 |
+
)
|
847 |
+
|
848 |
+
if do_classifier_free_guidance:
|
849 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
850 |
+
single_image_embeds = single_image_embeds.to(device)
|
851 |
+
|
852 |
+
image_embeds.append(single_image_embeds)
|
853 |
+
else:
|
854 |
+
repeat_dims = [1]
|
855 |
+
image_embeds = []
|
856 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
857 |
+
if do_classifier_free_guidance:
|
858 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
859 |
+
single_image_embeds = single_image_embeds.repeat(
|
860 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
861 |
+
)
|
862 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
863 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
864 |
+
)
|
865 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
866 |
+
else:
|
867 |
+
single_image_embeds = single_image_embeds.repeat(
|
868 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
869 |
+
)
|
870 |
+
image_embeds.append(single_image_embeds)
|
871 |
+
|
872 |
+
return image_embeds
|
873 |
+
|
874 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
875 |
+
def run_safety_checker(self, image, device, dtype):
|
876 |
+
if self.safety_checker is None:
|
877 |
+
has_nsfw_concept = None
|
878 |
+
else:
|
879 |
+
if torch.is_tensor(image):
|
880 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
881 |
+
else:
|
882 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
883 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
884 |
+
image, has_nsfw_concept = self.safety_checker(
|
885 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
886 |
+
)
|
887 |
+
return image, has_nsfw_concept
|
888 |
+
|
889 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
890 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
891 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
892 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
893 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
894 |
+
# and should be between [0, 1]
|
895 |
+
|
896 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
897 |
+
extra_step_kwargs = {}
|
898 |
+
if accepts_eta:
|
899 |
+
extra_step_kwargs["eta"] = eta
|
900 |
+
|
901 |
+
# check if the scheduler accepts generator
|
902 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
903 |
+
if accepts_generator:
|
904 |
+
extra_step_kwargs["generator"] = generator
|
905 |
+
return extra_step_kwargs
|
906 |
+
|
907 |
+
def check_inputs(
|
908 |
+
self,
|
909 |
+
prompt,
|
910 |
+
image,
|
911 |
+
mask_image,
|
912 |
+
height,
|
913 |
+
width,
|
914 |
+
strength,
|
915 |
+
callback_steps,
|
916 |
+
output_type,
|
917 |
+
negative_prompt=None,
|
918 |
+
prompt_embeds=None,
|
919 |
+
negative_prompt_embeds=None,
|
920 |
+
ip_adapter_image=None,
|
921 |
+
ip_adapter_image_embeds=None,
|
922 |
+
callback_on_step_end_tensor_inputs=None,
|
923 |
+
padding_mask_crop=None,
|
924 |
+
):
|
925 |
+
if strength < 0 or strength > 1:
|
926 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
927 |
+
|
928 |
+
if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0:
|
929 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
930 |
+
|
931 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
932 |
+
raise ValueError(
|
933 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
934 |
+
f" {type(callback_steps)}."
|
935 |
+
)
|
936 |
+
|
937 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
938 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
939 |
+
):
|
940 |
+
raise ValueError(
|
941 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
942 |
+
)
|
943 |
+
|
944 |
+
if prompt is not None and prompt_embeds is not None:
|
945 |
+
raise ValueError(
|
946 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
947 |
+
" only forward one of the two."
|
948 |
+
)
|
949 |
+
elif prompt is None and prompt_embeds is None:
|
950 |
+
raise ValueError(
|
951 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
952 |
+
)
|
953 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
954 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
955 |
+
|
956 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
957 |
+
raise ValueError(
|
958 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
959 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
960 |
+
)
|
961 |
+
|
962 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
963 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
964 |
+
raise ValueError(
|
965 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
966 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
967 |
+
f" {negative_prompt_embeds.shape}."
|
968 |
+
)
|
969 |
+
if padding_mask_crop is not None:
|
970 |
+
if not isinstance(image, PIL.Image.Image):
|
971 |
+
raise ValueError(
|
972 |
+
f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
|
973 |
+
)
|
974 |
+
if not isinstance(mask_image, PIL.Image.Image):
|
975 |
+
raise ValueError(
|
976 |
+
f"The mask image should be a PIL image when inpainting mask crop, but is of type"
|
977 |
+
f" {type(mask_image)}."
|
978 |
+
)
|
979 |
+
if output_type != "pil":
|
980 |
+
raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
|
981 |
+
|
982 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
983 |
+
raise ValueError(
|
984 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
985 |
+
)
|
986 |
+
|
987 |
+
if ip_adapter_image_embeds is not None:
|
988 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
989 |
+
raise ValueError(
|
990 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
991 |
+
)
|
992 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
993 |
+
raise ValueError(
|
994 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
995 |
+
)
|
996 |
+
|
997 |
+
def prepare_latents(
|
998 |
+
self,
|
999 |
+
batch_size,
|
1000 |
+
num_channels_latents,
|
1001 |
+
height,
|
1002 |
+
width,
|
1003 |
+
dtype,
|
1004 |
+
device,
|
1005 |
+
generator,
|
1006 |
+
latents=None,
|
1007 |
+
image=None,
|
1008 |
+
timestep=None,
|
1009 |
+
is_strength_max=True,
|
1010 |
+
return_noise=False,
|
1011 |
+
return_image_latents=False,
|
1012 |
+
):
|
1013 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
1014 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
1015 |
+
raise ValueError(
|
1016 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
1017 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
if (image is None or timestep is None) and not is_strength_max:
|
1021 |
+
raise ValueError(
|
1022 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
1023 |
+
"However, either the image or the noise timestep has not been provided."
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
if return_image_latents or (latents is None and not is_strength_max):
|
1027 |
+
image = image.to(device=device, dtype=dtype)
|
1028 |
+
|
1029 |
+
if image.shape[1] == 4:
|
1030 |
+
image_latents = image
|
1031 |
+
else:
|
1032 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
1033 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
1034 |
+
|
1035 |
+
if latents is None:
|
1036 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
1037 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
1038 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
1039 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
1040 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
1041 |
+
else:
|
1042 |
+
noise = latents.to(device)
|
1043 |
+
latents = noise * self.scheduler.init_noise_sigma
|
1044 |
+
|
1045 |
+
outputs = (latents,)
|
1046 |
+
|
1047 |
+
if return_noise:
|
1048 |
+
outputs += (noise,)
|
1049 |
+
|
1050 |
+
if return_image_latents:
|
1051 |
+
outputs += (image_latents,)
|
1052 |
+
|
1053 |
+
return outputs
|
1054 |
+
|
1055 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
1056 |
+
if isinstance(generator, list):
|
1057 |
+
image_latents = [
|
1058 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
1059 |
+
for i in range(image.shape[0])
|
1060 |
+
]
|
1061 |
+
image_latents = torch.cat(image_latents, dim=0)
|
1062 |
+
else:
|
1063 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
1064 |
+
|
1065 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
1066 |
+
|
1067 |
+
return image_latents
|
1068 |
+
|
1069 |
+
def prepare_mask_latents(
|
1070 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator
|
1071 |
+
):
|
1072 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
1073 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
1074 |
+
# and half precision
|
1075 |
+
mask = torch.nn.functional.interpolate(
|
1076 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
1077 |
+
)
|
1078 |
+
mask = mask.to(device=device, dtype=dtype)
|
1079 |
+
|
1080 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
1081 |
+
|
1082 |
+
if masked_image.shape[1] == 4:
|
1083 |
+
masked_image_latents = masked_image
|
1084 |
+
else:
|
1085 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
1086 |
+
|
1087 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
1088 |
+
if mask.shape[0] < batch_size:
|
1089 |
+
if not batch_size % mask.shape[0] == 0:
|
1090 |
+
raise ValueError(
|
1091 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
1092 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
1093 |
+
" of masks that you pass is divisible by the total requested batch size."
|
1094 |
+
)
|
1095 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
1096 |
+
if masked_image_latents.shape[0] < batch_size:
|
1097 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
1098 |
+
raise ValueError(
|
1099 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
1100 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
1101 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
1102 |
+
)
|
1103 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
1104 |
+
|
1105 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
1106 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
1107 |
+
return mask, masked_image_latents
|
1108 |
+
|
1109 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
1110 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
1111 |
+
# get the original timestep using init_timestep
|
1112 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
1113 |
+
|
1114 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
1115 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
1116 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
1117 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
1118 |
+
|
1119 |
+
return timesteps, num_inference_steps - t_start
|
1120 |
+
|
1121 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
1122 |
+
def get_guidance_scale_embedding(
|
1123 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
1124 |
+
) -> torch.FloatTensor:
|
1125 |
+
"""
|
1126 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
1127 |
+
|
1128 |
+
Args:
|
1129 |
+
w (`torch.Tensor`):
|
1130 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
1131 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
1132 |
+
Dimension of the embeddings to generate.
|
1133 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
1134 |
+
Data type of the generated embeddings.
|
1135 |
+
|
1136 |
+
Returns:
|
1137 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
1138 |
+
"""
|
1139 |
+
assert len(w.shape) == 1
|
1140 |
+
w = w * 1000.0
|
1141 |
+
|
1142 |
+
half_dim = embedding_dim // 2
|
1143 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
1144 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
1145 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
1146 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
1147 |
+
if embedding_dim % 2 == 1: # zero pad
|
1148 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
1149 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
1150 |
+
return emb
|
1151 |
+
|
1152 |
+
@property
|
1153 |
+
def guidance_scale(self):
|
1154 |
+
return self._guidance_scale
|
1155 |
+
|
1156 |
+
@property
|
1157 |
+
def clip_skip(self):
|
1158 |
+
return self._clip_skip
|
1159 |
+
|
1160 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1161 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1162 |
+
# corresponds to doing no classifier free guidance.
|
1163 |
+
@property
|
1164 |
+
def do_classifier_free_guidance(self):
|
1165 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
1166 |
+
|
1167 |
+
@property
|
1168 |
+
def cross_attention_kwargs(self):
|
1169 |
+
return self._cross_attention_kwargs
|
1170 |
+
|
1171 |
+
@property
|
1172 |
+
def num_timesteps(self):
|
1173 |
+
return self._num_timesteps
|
1174 |
+
|
1175 |
+
@property
|
1176 |
+
def interrupt(self):
|
1177 |
+
return self._interrupt
|
1178 |
+
|
1179 |
+
@property
|
1180 |
+
def pag_scale(self):
|
1181 |
+
return self._pag_scale
|
1182 |
+
|
1183 |
+
@property
|
1184 |
+
def do_perturbed_attention_guidance(self):
|
1185 |
+
return self._pag_scale > 0
|
1186 |
+
|
1187 |
+
@property
|
1188 |
+
def pag_adaptive_scaling(self):
|
1189 |
+
return self._pag_adaptive_scaling
|
1190 |
+
|
1191 |
+
@property
|
1192 |
+
def do_pag_adaptive_scaling(self):
|
1193 |
+
return self._pag_adaptive_scaling > 0
|
1194 |
+
|
1195 |
+
@property
|
1196 |
+
def pag_applied_layers_index(self):
|
1197 |
+
return self._pag_applied_layers_index
|
1198 |
+
|
1199 |
+
@torch.no_grad()
|
1200 |
+
def __call__(
|
1201 |
+
self,
|
1202 |
+
prompt: Union[str, List[str]] = None,
|
1203 |
+
image: PipelineImageInput = None,
|
1204 |
+
mask_image: PipelineImageInput = None,
|
1205 |
+
masked_image_latents: torch.FloatTensor = None,
|
1206 |
+
height: Optional[int] = None,
|
1207 |
+
width: Optional[int] = None,
|
1208 |
+
padding_mask_crop: Optional[int] = None,
|
1209 |
+
strength: float = 1.0,
|
1210 |
+
num_inference_steps: int = 50,
|
1211 |
+
timesteps: List[int] = None,
|
1212 |
+
guidance_scale: float = 7.5,
|
1213 |
+
pag_scale: float = 0.0,
|
1214 |
+
pag_adaptive_scaling: float = 0.0,
|
1215 |
+
pag_applied_layers_index: List[str] = ["d4"],
|
1216 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1217 |
+
num_images_per_prompt: Optional[int] = 1,
|
1218 |
+
eta: float = 0.0,
|
1219 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1220 |
+
latents: Optional[torch.FloatTensor] = None,
|
1221 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1222 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1223 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1224 |
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
1225 |
+
output_type: Optional[str] = "pil",
|
1226 |
+
return_dict: bool = True,
|
1227 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1228 |
+
clip_skip: int = None,
|
1229 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1230 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1231 |
+
**kwargs,
|
1232 |
+
):
|
1233 |
+
r"""
|
1234 |
+
The call function to the pipeline for generation.
|
1235 |
+
|
1236 |
+
Args:
|
1237 |
+
prompt (`str` or `List[str]`, *optional*):
|
1238 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
1239 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
1240 |
+
`Image`, numpy array or tensor representing an image batch to be inpainted (which parts of the image to
|
1241 |
+
be masked out with `mask_image` and repainted according to `prompt`). For both numpy array and pytorch
|
1242 |
+
tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the
|
1243 |
+
expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the
|
1244 |
+
expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but
|
1245 |
+
if passing latents directly it is not encoded again.
|
1246 |
+
mask_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
1247 |
+
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
|
1248 |
+
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
|
1249 |
+
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
|
1250 |
+
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
|
1251 |
+
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
|
1252 |
+
1)`, or `(H, W)`.
|
1253 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1254 |
+
The height in pixels of the generated image.
|
1255 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1256 |
+
The width in pixels of the generated image.
|
1257 |
+
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
1258 |
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
1259 |
+
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
|
1260 |
+
with the same aspect ration of the image and contains all masked area, and then expand that area based
|
1261 |
+
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
|
1262 |
+
resizing to the original image size for inpainting. This is useful when the masked area is small while
|
1263 |
+
the image is large and contain information irrelevant for inpainting, such as background.
|
1264 |
+
strength (`float`, *optional*, defaults to 1.0):
|
1265 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
1266 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
1267 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
1268 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
1269 |
+
essentially ignores `image`.
|
1270 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1271 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1272 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
1273 |
+
timesteps (`List[int]`, *optional*):
|
1274 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1275 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1276 |
+
passed will be used. Must be in descending order.
|
1277 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1278 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1279 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
1280 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1281 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
1282 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
1283 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1284 |
+
The number of images to generate per prompt.
|
1285 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1286 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
1287 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1288 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1289 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1290 |
+
generation deterministic.
|
1291 |
+
latents (`torch.FloatTensor`, *optional*):
|
1292 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1293 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1294 |
+
tensor is generated by sampling using the supplied random `generator`.
|
1295 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1296 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1297 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
1298 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1299 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1300 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1301 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1302 |
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
1303 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1304 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1305 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1306 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1307 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1308 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1309 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1310 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1311 |
+
plain tuple.
|
1312 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1313 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1314 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1315 |
+
clip_skip (`int`, *optional*):
|
1316 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1317 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1318 |
+
callback_on_step_end (`Callable`, *optional*):
|
1319 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
1320 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1321 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1322 |
+
`callback_on_step_end_tensor_inputs`.
|
1323 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1324 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1325 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1326 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1327 |
+
Examples:
|
1328 |
+
|
1329 |
+
```py
|
1330 |
+
>>> import PIL
|
1331 |
+
>>> import requests
|
1332 |
+
>>> import torch
|
1333 |
+
>>> from io import BytesIO
|
1334 |
+
|
1335 |
+
>>> from diffusers import StableDiffusionInpaintPipeline
|
1336 |
+
|
1337 |
+
|
1338 |
+
>>> def download_image(url):
|
1339 |
+
... response = requests.get(url)
|
1340 |
+
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
1341 |
+
|
1342 |
+
|
1343 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
1344 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
1345 |
+
|
1346 |
+
>>> init_image = download_image(img_url).resize((512, 512))
|
1347 |
+
>>> mask_image = download_image(mask_url).resize((512, 512))
|
1348 |
+
|
1349 |
+
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
1350 |
+
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
1351 |
+
... )
|
1352 |
+
>>> pipe = pipe.to("cuda")
|
1353 |
+
|
1354 |
+
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
1355 |
+
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
|
1356 |
+
```
|
1357 |
+
|
1358 |
+
Returns:
|
1359 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1360 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
1361 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
1362 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
1363 |
+
"not-safe-for-work" (nsfw) content.
|
1364 |
+
"""
|
1365 |
+
|
1366 |
+
callback = kwargs.pop("callback", None)
|
1367 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1368 |
+
|
1369 |
+
if callback is not None:
|
1370 |
+
deprecate(
|
1371 |
+
"callback",
|
1372 |
+
"1.0.0",
|
1373 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1374 |
+
)
|
1375 |
+
if callback_steps is not None:
|
1376 |
+
deprecate(
|
1377 |
+
"callback_steps",
|
1378 |
+
"1.0.0",
|
1379 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1380 |
+
)
|
1381 |
+
|
1382 |
+
# 0. Default height and width to unet
|
1383 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1384 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
1385 |
+
|
1386 |
+
# 1. Check inputs
|
1387 |
+
self.check_inputs(
|
1388 |
+
prompt,
|
1389 |
+
image,
|
1390 |
+
mask_image,
|
1391 |
+
height,
|
1392 |
+
width,
|
1393 |
+
strength,
|
1394 |
+
callback_steps,
|
1395 |
+
output_type,
|
1396 |
+
negative_prompt,
|
1397 |
+
prompt_embeds,
|
1398 |
+
negative_prompt_embeds,
|
1399 |
+
ip_adapter_image,
|
1400 |
+
ip_adapter_image_embeds,
|
1401 |
+
callback_on_step_end_tensor_inputs,
|
1402 |
+
padding_mask_crop,
|
1403 |
+
)
|
1404 |
+
|
1405 |
+
self._guidance_scale = guidance_scale
|
1406 |
+
self._clip_skip = clip_skip
|
1407 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1408 |
+
self._interrupt = False
|
1409 |
+
|
1410 |
+
self._pag_scale = pag_scale
|
1411 |
+
self._pag_adaptive_scaling = pag_adaptive_scaling
|
1412 |
+
self._pag_applied_layers_index = pag_applied_layers_index
|
1413 |
+
|
1414 |
+
# 2. Define call parameters
|
1415 |
+
if prompt is not None and isinstance(prompt, str):
|
1416 |
+
batch_size = 1
|
1417 |
+
elif prompt is not None and isinstance(prompt, list):
|
1418 |
+
batch_size = len(prompt)
|
1419 |
+
else:
|
1420 |
+
batch_size = prompt_embeds.shape[0]
|
1421 |
+
|
1422 |
+
device = self._execution_device
|
1423 |
+
|
1424 |
+
# 3. Encode input prompt
|
1425 |
+
text_encoder_lora_scale = (
|
1426 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1427 |
+
)
|
1428 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
1429 |
+
prompt,
|
1430 |
+
device,
|
1431 |
+
num_images_per_prompt,
|
1432 |
+
self.do_classifier_free_guidance,
|
1433 |
+
negative_prompt,
|
1434 |
+
prompt_embeds=prompt_embeds,
|
1435 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1436 |
+
lora_scale=text_encoder_lora_scale,
|
1437 |
+
clip_skip=self.clip_skip,
|
1438 |
+
)
|
1439 |
+
# For classifier free guidance, we need to do two forward passes.
|
1440 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
1441 |
+
# to avoid doing two forward passes
|
1442 |
+
|
1443 |
+
# cfg
|
1444 |
+
if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance:
|
1445 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
1446 |
+
# pag
|
1447 |
+
elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
1448 |
+
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds])
|
1449 |
+
# both
|
1450 |
+
elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
1451 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds])
|
1452 |
+
|
1453 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1454 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1455 |
+
ip_adapter_image,
|
1456 |
+
ip_adapter_image_embeds,
|
1457 |
+
device,
|
1458 |
+
batch_size * num_images_per_prompt
|
1459 |
+
)
|
1460 |
+
|
1461 |
+
# 4. set timesteps
|
1462 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1463 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1464 |
+
num_inference_steps=num_inference_steps, strength=strength, device=device
|
1465 |
+
)
|
1466 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
1467 |
+
if num_inference_steps < 1:
|
1468 |
+
raise ValueError(
|
1469 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
1470 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
1471 |
+
)
|
1472 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
1473 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1474 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1475 |
+
is_strength_max = strength == 1.0
|
1476 |
+
|
1477 |
+
# 5. Preprocess mask and image
|
1478 |
+
|
1479 |
+
if padding_mask_crop is not None:
|
1480 |
+
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
|
1481 |
+
resize_mode = "fill"
|
1482 |
+
else:
|
1483 |
+
crops_coords = None
|
1484 |
+
resize_mode = "default"
|
1485 |
+
|
1486 |
+
original_image = image
|
1487 |
+
init_image = self.image_processor.preprocess(
|
1488 |
+
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
|
1489 |
+
)
|
1490 |
+
init_image = init_image.to(dtype=torch.float32)
|
1491 |
+
|
1492 |
+
# 6. Prepare latent variables
|
1493 |
+
num_channels_latents = self.vae.config.latent_channels
|
1494 |
+
num_channels_unet = self.unet.config.in_channels
|
1495 |
+
return_image_latents = num_channels_unet == 4
|
1496 |
+
|
1497 |
+
latents_outputs = self.prepare_latents(
|
1498 |
+
batch_size * num_images_per_prompt,
|
1499 |
+
num_channels_latents,
|
1500 |
+
height,
|
1501 |
+
width,
|
1502 |
+
prompt_embeds.dtype,
|
1503 |
+
device,
|
1504 |
+
generator,
|
1505 |
+
latents,
|
1506 |
+
image=init_image,
|
1507 |
+
timestep=latent_timestep,
|
1508 |
+
is_strength_max=is_strength_max,
|
1509 |
+
return_noise=True,
|
1510 |
+
return_image_latents=return_image_latents,
|
1511 |
+
)
|
1512 |
+
|
1513 |
+
if return_image_latents:
|
1514 |
+
latents, noise, image_latents = latents_outputs
|
1515 |
+
else:
|
1516 |
+
latents, noise = latents_outputs
|
1517 |
+
|
1518 |
+
# 7. Prepare mask latent variables
|
1519 |
+
mask_condition = self.mask_processor.preprocess(
|
1520 |
+
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
1521 |
+
)
|
1522 |
+
|
1523 |
+
if masked_image_latents is None:
|
1524 |
+
masked_image = init_image * (mask_condition < 0.5)
|
1525 |
+
else:
|
1526 |
+
masked_image = masked_image_latents
|
1527 |
+
|
1528 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1529 |
+
mask_condition,
|
1530 |
+
masked_image,
|
1531 |
+
batch_size * num_images_per_prompt,
|
1532 |
+
height,
|
1533 |
+
width,
|
1534 |
+
prompt_embeds.dtype,
|
1535 |
+
device,
|
1536 |
+
generator
|
1537 |
+
)
|
1538 |
+
|
1539 |
+
# 8. Check that sizes of mask, masked image and latents match
|
1540 |
+
if num_channels_unet == 9:
|
1541 |
+
# default case for runwayml/stable-diffusion-inpainting
|
1542 |
+
num_channels_mask = mask.shape[1]
|
1543 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
1544 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
1545 |
+
raise ValueError(
|
1546 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
1547 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
1548 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
1549 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
1550 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
1551 |
+
)
|
1552 |
+
elif num_channels_unet != 4:
|
1553 |
+
raise ValueError(
|
1554 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
1555 |
+
)
|
1556 |
+
|
1557 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1558 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1559 |
+
|
1560 |
+
# 9.1 Add image embeds for IP-Adapter
|
1561 |
+
added_cond_kwargs = (
|
1562 |
+
{"image_embeds": image_embeds}
|
1563 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
|
1564 |
+
else None
|
1565 |
+
)
|
1566 |
+
|
1567 |
+
# 9.2 Optionally get Guidance Scale Embedding
|
1568 |
+
timestep_cond = None
|
1569 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1570 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1571 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1572 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1573 |
+
).to(device=device, dtype=latents.dtype)
|
1574 |
+
|
1575 |
+
# 10. Denoising loop
|
1576 |
+
if self.do_perturbed_attention_guidance:
|
1577 |
+
down_layers = []
|
1578 |
+
mid_layers = []
|
1579 |
+
up_layers = []
|
1580 |
+
for name, module in self.unet.named_modules():
|
1581 |
+
if "attn1" in name and "to" not in name:
|
1582 |
+
layer_type = name.split(".")[0].split("_")[0]
|
1583 |
+
if layer_type == "down":
|
1584 |
+
down_layers.append(module)
|
1585 |
+
elif layer_type == "mid":
|
1586 |
+
mid_layers.append(module)
|
1587 |
+
elif layer_type == "up":
|
1588 |
+
up_layers.append(module)
|
1589 |
+
else:
|
1590 |
+
raise ValueError(f"Invalid layer type: {layer_type}")
|
1591 |
+
|
1592 |
+
# change attention layer in UNet if use PAG
|
1593 |
+
if self.do_perturbed_attention_guidance:
|
1594 |
+
if self.do_classifier_free_guidance:
|
1595 |
+
replace_processor = PAGCFGIdentitySelfAttnProcessor()
|
1596 |
+
else:
|
1597 |
+
replace_processor = PAGIdentitySelfAttnProcessor()
|
1598 |
+
|
1599 |
+
drop_layers = self.pag_applied_layers_index
|
1600 |
+
for drop_layer in drop_layers:
|
1601 |
+
try:
|
1602 |
+
if drop_layer[0] == "d":
|
1603 |
+
down_layers[int(drop_layer[1])].processor = replace_processor
|
1604 |
+
elif drop_layer[0] == "m":
|
1605 |
+
mid_layers[int(drop_layer[1])].processor = replace_processor
|
1606 |
+
elif drop_layer[0] == "u":
|
1607 |
+
up_layers[int(drop_layer[1])].processor = replace_processor
|
1608 |
+
else:
|
1609 |
+
raise ValueError(f"Invalid layer type: {drop_layer[0]}")
|
1610 |
+
except IndexError:
|
1611 |
+
raise ValueError(
|
1612 |
+
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers."
|
1613 |
+
)
|
1614 |
+
|
1615 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1616 |
+
self._num_timesteps = len(timesteps)
|
1617 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1618 |
+
for i, t in enumerate(timesteps):
|
1619 |
+
if self.interrupt:
|
1620 |
+
continue
|
1621 |
+
|
1622 |
+
# cfg
|
1623 |
+
if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance:
|
1624 |
+
latent_model_input = torch.cat([latents] * 2)
|
1625 |
+
mask_input = torch.cat([mask] * 2)
|
1626 |
+
masked_image_latents_input = torch.cat([masked_image_latents] * 2)
|
1627 |
+
# pag
|
1628 |
+
elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
1629 |
+
latent_model_input = torch.cat([latents] * 2)
|
1630 |
+
mask_input = torch.cat([mask] * 2)
|
1631 |
+
masked_image_latents_input = torch.cat([masked_image_latents] * 2)
|
1632 |
+
# both
|
1633 |
+
elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
1634 |
+
latent_model_input = torch.cat([latents] * 3)
|
1635 |
+
mask_input = torch.cat([mask] * 3)
|
1636 |
+
masked_image_latents_input = torch.cat([masked_image_latents] * 3)
|
1637 |
+
# no
|
1638 |
+
else:
|
1639 |
+
latent_model_input = latents
|
1640 |
+
mask_input = mask
|
1641 |
+
masked_image_latents_input = masked_image_latents
|
1642 |
+
|
1643 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1644 |
+
|
1645 |
+
if num_channels_unet == 9:
|
1646 |
+
|
1647 |
+
latent_model_input = torch.cat([latent_model_input, mask_input, masked_image_latents_input], dim=1)
|
1648 |
+
|
1649 |
+
# predict the noise residual
|
1650 |
+
noise_pred = self.unet(
|
1651 |
+
latent_model_input,
|
1652 |
+
t,
|
1653 |
+
encoder_hidden_states=prompt_embeds,
|
1654 |
+
timestep_cond=timestep_cond,
|
1655 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1656 |
+
added_cond_kwargs=added_cond_kwargs,
|
1657 |
+
return_dict=False,
|
1658 |
+
)[0]
|
1659 |
+
|
1660 |
+
# perform guidance
|
1661 |
+
|
1662 |
+
# cfg
|
1663 |
+
if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance:
|
1664 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1665 |
+
|
1666 |
+
delta = noise_pred_text - noise_pred_uncond
|
1667 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * delta
|
1668 |
+
|
1669 |
+
# pag
|
1670 |
+
elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
1671 |
+
noise_pred_original, noise_pred_perturb = noise_pred.chunk(2)
|
1672 |
+
|
1673 |
+
signal_scale = self.pag_scale
|
1674 |
+
if self.do_pag_adaptive_scaling:
|
1675 |
+
signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000 - t)
|
1676 |
+
if signal_scale < 0:
|
1677 |
+
signal_scale = 0
|
1678 |
+
|
1679 |
+
noise_pred = noise_pred_original + signal_scale * (noise_pred_original - noise_pred_perturb)
|
1680 |
+
|
1681 |
+
# both
|
1682 |
+
elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance:
|
1683 |
+
noise_pred_uncond, noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(3)
|
1684 |
+
|
1685 |
+
signal_scale = self.pag_scale
|
1686 |
+
if self.do_pag_adaptive_scaling:
|
1687 |
+
signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000 - t)
|
1688 |
+
if signal_scale < 0:
|
1689 |
+
signal_scale = 0
|
1690 |
+
|
1691 |
+
noise_pred = (
|
1692 |
+
noise_pred_text
|
1693 |
+
+ (self.guidance_scale - 1.0) * (noise_pred_text - noise_pred_uncond)
|
1694 |
+
+ signal_scale * (noise_pred_text - noise_pred_text_perturb)
|
1695 |
+
)
|
1696 |
+
|
1697 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1698 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1699 |
+
if num_channels_unet == 4:
|
1700 |
+
init_latents_proper = image_latents
|
1701 |
+
if self.do_classifier_free_guidance:
|
1702 |
+
init_mask, _ = mask.chunk(2)
|
1703 |
+
else:
|
1704 |
+
init_mask = mask
|
1705 |
+
|
1706 |
+
if i < len(timesteps) - 1:
|
1707 |
+
noise_timestep = timesteps[i + 1]
|
1708 |
+
init_latents_proper = self.scheduler.add_noise(
|
1709 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
1710 |
+
)
|
1711 |
+
|
1712 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1713 |
+
|
1714 |
+
if callback_on_step_end is not None:
|
1715 |
+
callback_kwargs = {}
|
1716 |
+
for k in callback_on_step_end_tensor_inputs:
|
1717 |
+
callback_kwargs[k] = locals()[k]
|
1718 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1719 |
+
|
1720 |
+
latents = callback_outputs.pop("latents", latents)
|
1721 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1722 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1723 |
+
mask = callback_outputs.pop("mask", mask)
|
1724 |
+
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
|
1725 |
+
|
1726 |
+
# call the callback, if provided
|
1727 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1728 |
+
progress_bar.update()
|
1729 |
+
if callback is not None and i % callback_steps == 0:
|
1730 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1731 |
+
callback(step_idx, t, latents)
|
1732 |
+
|
1733 |
+
if not output_type == "latent":
|
1734 |
+
condition_kwargs = {}
|
1735 |
+
if isinstance(self.vae, AsymmetricAutoencoderKL):
|
1736 |
+
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
|
1737 |
+
init_image_condition = init_image.clone()
|
1738 |
+
init_image = self._encode_vae_image(init_image, generator=generator)
|
1739 |
+
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
|
1740 |
+
condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
|
1741 |
+
image = self.vae.decode(
|
1742 |
+
latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs
|
1743 |
+
)[0]
|
1744 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1745 |
+
else:
|
1746 |
+
image = latents
|
1747 |
+
has_nsfw_concept = None
|
1748 |
+
|
1749 |
+
if has_nsfw_concept is None:
|
1750 |
+
do_denormalize = [True] * image.shape[0]
|
1751 |
+
else:
|
1752 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1753 |
+
|
1754 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1755 |
+
|
1756 |
+
if padding_mask_crop is not None:
|
1757 |
+
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
|
1758 |
+
|
1759 |
+
# Offload all models
|
1760 |
+
self.maybe_free_model_hooks()
|
1761 |
+
|
1762 |
+
# change attention layer in UNet if use PAG
|
1763 |
+
if self.do_perturbed_attention_guidance:
|
1764 |
+
drop_layers = self.pag_applied_layers_index
|
1765 |
+
for drop_layer in drop_layers:
|
1766 |
+
try:
|
1767 |
+
if drop_layer[0] == "d":
|
1768 |
+
down_layers[int(drop_layer[1])].processor = AttnProcessor2_0()
|
1769 |
+
elif drop_layer[0] == "m":
|
1770 |
+
mid_layers[int(drop_layer[1])].processor = AttnProcessor2_0()
|
1771 |
+
elif drop_layer[0] == "u":
|
1772 |
+
up_layers[int(drop_layer[1])].processor = AttnProcessor2_0()
|
1773 |
+
else:
|
1774 |
+
raise ValueError(f"Invalid layer type: {drop_layer[0]}")
|
1775 |
+
except IndexError:
|
1776 |
+
raise ValueError(
|
1777 |
+
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers."
|
1778 |
+
)
|
1779 |
+
|
1780 |
+
if not return_dict:
|
1781 |
+
return (image, has_nsfw_concept)
|
1782 |
+
|
1783 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|