|
import math |
|
import torch |
|
from torch.utils.data import Sampler |
|
import torch.distributed as dist |
|
|
|
|
|
class DistributedEvalSampler(Sampler): |
|
r""" |
|
DistributedEvalSampler is different from DistributedSampler. |
|
It does NOT add extra samples to make it evenly divisible. |
|
DistributedEvalSampler should NOT be used for training. The distributed processes could hang forever. |
|
See this issue for details: https://github.com/pytorch/pytorch/issues/22584 |
|
shuffle is disabled by default |
|
|
|
DistributedEvalSampler is for evaluation purpose where synchronization does not happen every epoch. |
|
Synchronization should be done outside the dataloader loop. |
|
|
|
Sampler that restricts data loading to a subset of the dataset. |
|
|
|
It is especially useful in conjunction with |
|
:class:`torch.nn.parallel.DistributedDataParallel`. In such a case, each |
|
process can pass a :class`~torch.utils.data.DistributedSampler` instance as a |
|
:class:`~torch.utils.data.DataLoader` sampler, and load a subset of the |
|
original dataset that is exclusive to it. |
|
|
|
.. note:: |
|
Dataset is assumed to be of constant size. |
|
|
|
Arguments: |
|
dataset: Dataset used for sampling. |
|
num_replicas (int, optional): Number of processes participating in |
|
distributed training. By default, :attr:`rank` is retrieved from the |
|
current distributed group. |
|
rank (int, optional): Rank of the current process within :attr:`num_replicas`. |
|
By default, :attr:`rank` is retrieved from the current distributed |
|
group. |
|
shuffle (bool, optional): If ``True`` (default), sampler will shuffle the |
|
indices. |
|
seed (int, optional): random seed used to shuffle the sampler if |
|
:attr:`shuffle=True`. This number should be identical across all |
|
processes in the distributed group. Default: ``0``. |
|
|
|
.. warning:: |
|
In distributed mode, calling the :meth`set_epoch(epoch) <set_epoch>` method at |
|
the beginning of each epoch **before** creating the :class:`DataLoader` iterator |
|
is necessary to make shuffling work properly across multiple epochs. Otherwise, |
|
the same ordering will be always used. |
|
|
|
Example:: |
|
|
|
>>> sampler = DistributedSampler(dataset) if is_distributed else None |
|
>>> loader = DataLoader(dataset, shuffle=(sampler is None), |
|
... sampler=sampler) |
|
>>> for epoch in range(start_epoch, n_epochs): |
|
... if is_distributed: |
|
... sampler.set_epoch(epoch) |
|
... train(loader) |
|
""" |
|
|
|
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=False, seed=0): |
|
if num_replicas is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = dist.get_world_size() |
|
if rank is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = dist.get_rank() |
|
self.dataset = dataset |
|
self.num_replicas = num_replicas |
|
self.rank = rank |
|
self.epoch = 0 |
|
|
|
|
|
self.total_size = len(self.dataset) |
|
indices = list(range(self.total_size)) |
|
indices = indices[self.rank:self.total_size:self.num_replicas] |
|
self.num_samples = len(indices) |
|
|
|
self.shuffle = shuffle |
|
self.seed = seed |
|
|
|
def __iter__(self): |
|
if self.shuffle: |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.seed + self.epoch) |
|
indices = torch.randperm(len(self.dataset), generator=g).tolist() |
|
else: |
|
indices = list(range(len(self.dataset))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
indices = indices[self.rank:self.total_size:self.num_replicas] |
|
assert len(indices) == self.num_samples |
|
|
|
return iter(indices) |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def set_epoch(self, epoch): |
|
r""" |
|
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas |
|
use a different random ordering for each epoch. Otherwise, the next iteration of this |
|
sampler will yield the same ordering. |
|
|
|
Arguments: |
|
epoch (int): _epoch number. |
|
""" |
|
self.epoch = epoch |
|
|