lambdanet / Demosaic /code /model /rlambdanet.py
hyliu's picture
Upload folder using huggingface_hub
8cb1339 verified
from model import common
import torch
import torch.nn as nn
from lambda_networks import LambdaLayer
import torch.cuda.amp as amp
def make_model(args, parent=False):
return RLAMBDANET(args)
class RLAMBDANET(nn.Module):
def __init__(self, args, conv=common.default_conv):
super(RLAMBDANET, self).__init__()
n_resblocks = args.n_resblocks
n_feats = args.n_feats
kernel_size = 3
scale = args.scale[0]
rgb_mean = (0.4488, 0.4371, 0.4040)
rgb_std = (1.0, 1.0, 1.0)
self.sub_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std)
layer = LambdaLayer(
dim = n_feats,
dim_out = n_feats,
r = 23, # the receptive field for relative positional encoding (23 x 23)
dim_k = 16,
heads = 4,
dim_u = 4
)
# msa = attention.PyramidAttention()
# define head module
m_head = [conv(args.n_colors, n_feats, kernel_size)]
# define body module
m_body = [
common.ResBlock(
conv, n_feats, kernel_size, nn.PReLU(), res_scale=args.res_scale
) for _ in range(n_resblocks//2)
]
# m_body.append(msa)
m_body.append(layer)
for i in range(n_resblocks//2):
m_body.append(common.ResBlock(conv,n_feats,kernel_size,nn.PReLU(),res_scale=args.res_scale))
m_body.append(conv(n_feats, n_feats, kernel_size))
# define tail module
#m_tail = [
# common.Upsampler(conv, scale, n_feats, act=False),
# conv(n_feats, args.n_colors, kernel_size)
#]
m_tail = [
conv(n_feats, args.n_colors, kernel_size)
]
self.add_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)
self.head = nn.Sequential(*m_head)
self.body = nn.Sequential(*m_body)
self.tail = nn.Sequential(*m_tail)
self.recurrence = args.recurrence
self.detach = args.detach
# self.step_detach = args.step_detach
self.amp = args.amp
# self.beta=nn.Parameter(torch.ones(1)*0.5)
def forward(self, x):
with amp.autocast(self.amp):
out = self.head(x)
last_output=out
for i in range(self.recurrence):
res = self.body(last_output)
res = res + last_output
last_output=res
output = self.tail(last_output)
return [output]
def load_state_dict(self, state_dict, strict=True):
own_state = self.state_dict()
for name, param in state_dict.items():
if name in own_state:
if isinstance(param, nn.Parameter):
param = param.data
try:
own_state[name].copy_(param)
except Exception:
if name.find('tail') == -1:
raise RuntimeError('While copying the parameter named {}, '
'whose dimensions in the model are {} and '
'whose dimensions in the checkpoint are {}.'
.format(name, own_state[name].size(), param.size()))
elif strict:
if name.find('tail') == -1:
raise KeyError('unexpected key "{}" in state_dict'
.format(name))