|
from model import common
|
|
from model import attention
|
|
import torch
|
|
from lambda_networks import LambdaLayer
|
|
import torch.nn as nn
|
|
import torch.cuda.amp as amp
|
|
|
|
class ConvGRU(nn.Module):
|
|
def __init__(self, hidden_dim=128, input_dim=192+128):
|
|
super(ConvGRU, self).__init__()
|
|
self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
|
self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
|
self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
|
|
|
def forward(self, h, x):
|
|
hx = torch.cat([h, x], dim=1)
|
|
|
|
z = torch.sigmoid(self.convz(hx))
|
|
r = torch.sigmoid(self.convr(hx))
|
|
q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)))
|
|
|
|
|
|
|
|
return (1-z) * h + z * q
|
|
|
|
class SepConvGRU(nn.Module):
|
|
def __init__(self, hidden_dim=128, input_dim=192+128):
|
|
super(SepConvGRU, self).__init__()
|
|
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
|
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
|
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
|
|
|
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
|
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
|
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
|
|
|
|
|
def forward(self, h, x):
|
|
|
|
hx = torch.cat([h, x], dim=1)
|
|
z = torch.sigmoid(self.convz1(hx))
|
|
r = torch.sigmoid(self.convr1(hx))
|
|
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))
|
|
h = (1-z) * h + z * q
|
|
|
|
|
|
hx = torch.cat([h, x], dim=1)
|
|
z = torch.sigmoid(self.convz2(hx))
|
|
r = torch.sigmoid(self.convr2(hx))
|
|
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))
|
|
h = (1-z) * h + z * q
|
|
|
|
return h
|
|
|
|
|
|
def make_model(args, parent=False):
|
|
return RAFTNET(args)
|
|
|
|
class RAFTNET(nn.Module):
|
|
def __init__(self, args, conv=common.default_conv):
|
|
super(RAFTNET, self).__init__()
|
|
|
|
n_resblocks = args.n_resblocks
|
|
n_feats = args.n_feats
|
|
kernel_size = 3
|
|
scale = args.scale[0]
|
|
|
|
rgb_mean = (0.4488, 0.4371, 0.4040)
|
|
rgb_std = (1.0, 1.0, 1.0)
|
|
self.sub_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std)
|
|
|
|
|
|
m_head = [conv(args.n_colors, n_feats, kernel_size)]
|
|
|
|
for i in range(5):
|
|
m_head.append(common.ResBlock(conv,n_feats,kernel_size,nn.PReLU(),res_scale=args.res_scale))
|
|
|
|
m_tail=[]
|
|
for i in range(5):
|
|
m_tail.append(common.ResBlock(conv,n_feats,kernel_size,nn.PReLU(),res_scale=args.res_scale))
|
|
m_tail.append(conv(n_feats, args.n_colors, kernel_size))
|
|
|
|
layer = LambdaLayer(
|
|
dim = n_feats,
|
|
dim_out = n_feats,
|
|
r = 23,
|
|
dim_k = 16,
|
|
heads = 4,
|
|
dim_u = 4
|
|
)
|
|
|
|
m_body = [
|
|
common.ResBlock(
|
|
conv, n_feats, kernel_size, nn.PReLU(), res_scale=args.res_scale
|
|
) for _ in range(n_resblocks//2)
|
|
]
|
|
m_body.append(layer)
|
|
for i in range(n_resblocks//2):
|
|
m_body.append(common.ResBlock(conv,n_feats,kernel_size,nn.PReLU(),res_scale=args.res_scale))
|
|
|
|
m_body.append(conv(n_feats, n_feats, kernel_size))
|
|
|
|
self.add_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)
|
|
|
|
self.head = nn.Sequential(*m_head)
|
|
self.body = nn.Sequential(*m_body)
|
|
self.tail = nn.Sequential(*m_tail)
|
|
self.gru = ConvGRU(hidden_dim=64,input_dim=64)
|
|
self.recurrence = args.recurrence
|
|
self.detach = args.detach
|
|
|
|
self.amp = args.amp
|
|
|
|
def forward(self, x):
|
|
with amp.autocast(self.amp):
|
|
x=(x-0.5)/0.5
|
|
x = self.head(x)
|
|
hidden = x.clone()
|
|
output_lst=[None]*self.recurrence
|
|
for i in range(self.recurrence):
|
|
gru_out=self.gru(hidden,x)
|
|
res=self.body(gru_out)
|
|
gru_out=res+gru_out
|
|
hidden=gru_out
|
|
output_lst[i]=self.tail(gru_out)*0.5+0.5
|
|
return output_lst
|
|
|
|
def load_state_dict(self, state_dict, strict=True):
|
|
own_state = self.state_dict()
|
|
for name, param in state_dict.items():
|
|
if name in own_state:
|
|
if isinstance(param, nn.Parameter):
|
|
param = param.data
|
|
try:
|
|
own_state[name].copy_(param)
|
|
except Exception:
|
|
if name.find('tail') == -1:
|
|
raise RuntimeError('While copying the parameter named {}, '
|
|
'whose dimensions in the model are {} and '
|
|
'whose dimensions in the checkpoint are {}.'
|
|
.format(name, own_state[name].size(), param.size()))
|
|
elif strict:
|
|
if name.find('tail') == -1:
|
|
raise KeyError('unexpected key "{}" in state_dict'
|
|
.format(name))
|
|
|
|
|