File size: 8,638 Bytes
8ec10cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
from tqdm import tqdm

import torch

import data.common
from utils import interact, MultiSaver
from torch.utils.tensorboard import SummaryWriter
import torchvision

import torch.cuda.amp as amp

class Trainer():

    def __init__(self, args, model, criterion, optimizer, loaders):
        print('===> Initializing trainer')
        self.args = args
        self.mode = 'train' # 'val', 'test'
        self.epoch = args.start_epoch
        self.save_dir = args.save_dir

        self.model = model
        self.criterion = criterion
        self.optimizer = optimizer
        self.loaders = loaders


        self.do_train = args.do_train
        self.do_validate = args.do_validate
        self.do_test = args.do_test

        self.device = args.device
        self.dtype = args.dtype
        self.dtype_eval = torch.float32 if args.precision == 'single' else torch.float16
        self.recurrence=args.n_scales
        if self.args.demo and self.args.demo_output_dir:
            self.result_dir = self.args.demo_output_dir
        else:
            self.result_dir = os.path.join(self.save_dir, 'result')
        os.makedirs(self.result_dir, exist_ok=True)
        print('results are saved in {}'.format(self.result_dir))

        self.imsaver = MultiSaver(self.result_dir)

        self.is_slave = self.args.launched and self.args.rank != 0

        self.scaler = amp.GradScaler(
            init_scale=self.args.init_scale,
            enabled=self.args.amp
        )
        if not self.is_slave:
            self.writter=SummaryWriter(f"runs/{args.save_dir}")


    def save(self, epoch=None):
        epoch = self.epoch if epoch is None else epoch
        if epoch % self.args.save_every == 0:
            if self.mode == 'train':
                self.model.save(epoch)
                self.optimizer.save(epoch)
            self.criterion.save()

        return

    def load(self, epoch=None, pretrained=None):
        if epoch is None:
            epoch = self.args.load_epoch
        self.epoch = epoch
        self.model.load(epoch, pretrained)
        self.optimizer.load(epoch)
        self.criterion.load(epoch)

        return

    def train(self, epoch):
        self.mode = 'train'
        self.epoch = epoch

        self.model.train()
        self.model.to(dtype=self.dtype)

        self.criterion.train()
        self.criterion.epoch = epoch

        if not self.is_slave:
            print('[Epoch {} / lr {:.2e}]'.format(
                epoch, self.optimizer.get_lr()
            ))
        total=len(self.loaders[self.mode])
        acc=0.0
        if self.args.distributed:
            self.loaders[self.mode].sampler.set_epoch(epoch)
        if self.is_slave:
            tq = self.loaders[self.mode]
        else:
            tq = tqdm(self.loaders[self.mode], ncols=80, smoothing=0, bar_format='{desc}|{bar}{r_bar}')
        buffer=[0.0]*self.recurrence
        torch.set_grad_enabled(True)
        for idx, batch in enumerate(tq):
            self.optimizer.zero_grad()

            input, target = data.common.to(
                batch[0], batch[1], device=self.device, dtype=self.dtype)
            # print(input[0].max(),input[0].min(),target[0].max(),target[0].min())
            # exit(1)
            with amp.autocast(self.args.amp):
                output = self.model(input)
                loss = self.criterion(output, target)
            
            for i in range(self.recurrence):
                buffer[i]+=self.criterion.buffer[i]
            
            self.scaler.scale(loss).backward()
            if self.args.clip>0:
                self.scaler.unscale_(self.optimizer.G)
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip)
            self.scaler.step(self.optimizer.G)
            self.scaler.update()

            if isinstance(tq, tqdm):
                tq.set_description(self.criterion.get_loss_desc())
        if not self.is_slave:
            rgb_range=self.args.rgb_range
            for i in range(len(output)):
                grid=torchvision.utils.make_grid(output[i])
                self.writter.add_image(f"Output{i}",grid/rgb_range,epoch)
                self.writter.add_scalar(f"Loss{i}",buffer[i],epoch)
            self.writter.add_image("Input",torchvision.utils.make_grid(input[0])/rgb_range,epoch)
            self.writter.add_image("Target",torchvision.utils.make_grid(target[0])/rgb_range,epoch)
        self.criterion.normalize()
        if isinstance(tq, tqdm):
            tq.set_description(self.criterion.get_loss_desc())
            tq.display(pos=-1)  # overwrite with synchronized loss

        self.criterion.step()
        self.optimizer.schedule(self.criterion.get_last_loss())

        if self.args.rank == 0:
            self.save(epoch)

        return

    def evaluate(self, epoch, mode='val'):
        self.mode = mode
        self.epoch = epoch

        self.model.eval()
        self.model.to(dtype=self.dtype_eval)

        if mode == 'val':
            self.criterion.validate()
        elif mode == 'test':
            self.criterion.test()
        self.criterion.epoch = epoch

        self.imsaver.join_background()

        if self.is_slave:
            tq = self.loaders[self.mode]
        else:
            tq = tqdm(self.loaders[self.mode], ncols=80, smoothing=0, bar_format='{desc}|{bar}{r_bar}')

        compute_loss = True
        torch.set_grad_enabled(False)
        for idx, batch in enumerate(tq):
            input, target = data.common.to(
                batch[0], batch[1], device=self.device, dtype=self.dtype_eval)
            with amp.autocast(self.args.amp):
                output = self.model(input)
            
            # if self.args.rgb_range==1:
                # output=output*255
                # target=target*255

            if mode == 'demo':  # remove padded part
                pad_width = batch[2]
                output[0], _ = data.common.pad(output[0], pad_width=pad_width, negative=True)

            if isinstance(batch[1], torch.BoolTensor):
                compute_loss = False

            if compute_loss:
                self.criterion(output, target)
                if isinstance(tq, tqdm):
                    tq.set_description(self.criterion.get_loss_desc())

            if self.args.save_results != 'none':
                if isinstance(output, (list, tuple)):
                    result = output[-1]  # select last output in a pyramid
                elif isinstance(output, torch.Tensor):
                    result = output

                names = batch[-1]

                if self.args.save_results == 'part' and compute_loss: # save all when GT not available
                    indices = batch[-2]
                    save_ids = [save_id for save_id, idx in enumerate(indices) if idx % 10 == 0]

                    result = result[save_ids]
                    names = [names[save_id] for save_id in save_ids]

                self.imsaver.save_image(result, names)

        if compute_loss:
            self.criterion.normalize()
            if isinstance(tq, tqdm):
                tq.set_description(self.criterion.get_loss_desc())
                tq.display(pos=-1)  # overwrite with synchronized loss

            self.criterion.step()
            if self.args.rank == 0:
                self.save()

        self.imsaver.end_background()

    def validate(self, epoch):
        self.evaluate(epoch, 'val')
        return

    def test(self, epoch):
        self.evaluate(epoch, 'test')
        return

    def fill_evaluation(self, epoch, mode=None, force=False):
        if epoch <= 0:
            return

        if mode is not None:
            self.mode = mode

        do_eval = force
        if not force:
            loss_missing = epoch not in self.criterion.loss_stat[self.mode]['Total']    # should it switch to all loss types?

            metric_missing = False
            for metric_type in self.criterion.metric:
                if epoch not in self.criterion.metric_stat[mode][metric_type]:
                    metric_missing = True

            do_eval = loss_missing or metric_missing

        if do_eval:
            try:
                self.load(epoch)
                self.evaluate(epoch, self.mode)
            except:
                # print('saved model/optimizer at epoch {} not found!'.format(epoch))
                pass

        return