File size: 8,638 Bytes
8ec10cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import os
from tqdm import tqdm
import torch
import data.common
from utils import interact, MultiSaver
from torch.utils.tensorboard import SummaryWriter
import torchvision
import torch.cuda.amp as amp
class Trainer():
def __init__(self, args, model, criterion, optimizer, loaders):
print('===> Initializing trainer')
self.args = args
self.mode = 'train' # 'val', 'test'
self.epoch = args.start_epoch
self.save_dir = args.save_dir
self.model = model
self.criterion = criterion
self.optimizer = optimizer
self.loaders = loaders
self.do_train = args.do_train
self.do_validate = args.do_validate
self.do_test = args.do_test
self.device = args.device
self.dtype = args.dtype
self.dtype_eval = torch.float32 if args.precision == 'single' else torch.float16
self.recurrence=args.n_scales
if self.args.demo and self.args.demo_output_dir:
self.result_dir = self.args.demo_output_dir
else:
self.result_dir = os.path.join(self.save_dir, 'result')
os.makedirs(self.result_dir, exist_ok=True)
print('results are saved in {}'.format(self.result_dir))
self.imsaver = MultiSaver(self.result_dir)
self.is_slave = self.args.launched and self.args.rank != 0
self.scaler = amp.GradScaler(
init_scale=self.args.init_scale,
enabled=self.args.amp
)
if not self.is_slave:
self.writter=SummaryWriter(f"runs/{args.save_dir}")
def save(self, epoch=None):
epoch = self.epoch if epoch is None else epoch
if epoch % self.args.save_every == 0:
if self.mode == 'train':
self.model.save(epoch)
self.optimizer.save(epoch)
self.criterion.save()
return
def load(self, epoch=None, pretrained=None):
if epoch is None:
epoch = self.args.load_epoch
self.epoch = epoch
self.model.load(epoch, pretrained)
self.optimizer.load(epoch)
self.criterion.load(epoch)
return
def train(self, epoch):
self.mode = 'train'
self.epoch = epoch
self.model.train()
self.model.to(dtype=self.dtype)
self.criterion.train()
self.criterion.epoch = epoch
if not self.is_slave:
print('[Epoch {} / lr {:.2e}]'.format(
epoch, self.optimizer.get_lr()
))
total=len(self.loaders[self.mode])
acc=0.0
if self.args.distributed:
self.loaders[self.mode].sampler.set_epoch(epoch)
if self.is_slave:
tq = self.loaders[self.mode]
else:
tq = tqdm(self.loaders[self.mode], ncols=80, smoothing=0, bar_format='{desc}|{bar}{r_bar}')
buffer=[0.0]*self.recurrence
torch.set_grad_enabled(True)
for idx, batch in enumerate(tq):
self.optimizer.zero_grad()
input, target = data.common.to(
batch[0], batch[1], device=self.device, dtype=self.dtype)
# print(input[0].max(),input[0].min(),target[0].max(),target[0].min())
# exit(1)
with amp.autocast(self.args.amp):
output = self.model(input)
loss = self.criterion(output, target)
for i in range(self.recurrence):
buffer[i]+=self.criterion.buffer[i]
self.scaler.scale(loss).backward()
if self.args.clip>0:
self.scaler.unscale_(self.optimizer.G)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip)
self.scaler.step(self.optimizer.G)
self.scaler.update()
if isinstance(tq, tqdm):
tq.set_description(self.criterion.get_loss_desc())
if not self.is_slave:
rgb_range=self.args.rgb_range
for i in range(len(output)):
grid=torchvision.utils.make_grid(output[i])
self.writter.add_image(f"Output{i}",grid/rgb_range,epoch)
self.writter.add_scalar(f"Loss{i}",buffer[i],epoch)
self.writter.add_image("Input",torchvision.utils.make_grid(input[0])/rgb_range,epoch)
self.writter.add_image("Target",torchvision.utils.make_grid(target[0])/rgb_range,epoch)
self.criterion.normalize()
if isinstance(tq, tqdm):
tq.set_description(self.criterion.get_loss_desc())
tq.display(pos=-1) # overwrite with synchronized loss
self.criterion.step()
self.optimizer.schedule(self.criterion.get_last_loss())
if self.args.rank == 0:
self.save(epoch)
return
def evaluate(self, epoch, mode='val'):
self.mode = mode
self.epoch = epoch
self.model.eval()
self.model.to(dtype=self.dtype_eval)
if mode == 'val':
self.criterion.validate()
elif mode == 'test':
self.criterion.test()
self.criterion.epoch = epoch
self.imsaver.join_background()
if self.is_slave:
tq = self.loaders[self.mode]
else:
tq = tqdm(self.loaders[self.mode], ncols=80, smoothing=0, bar_format='{desc}|{bar}{r_bar}')
compute_loss = True
torch.set_grad_enabled(False)
for idx, batch in enumerate(tq):
input, target = data.common.to(
batch[0], batch[1], device=self.device, dtype=self.dtype_eval)
with amp.autocast(self.args.amp):
output = self.model(input)
# if self.args.rgb_range==1:
# output=output*255
# target=target*255
if mode == 'demo': # remove padded part
pad_width = batch[2]
output[0], _ = data.common.pad(output[0], pad_width=pad_width, negative=True)
if isinstance(batch[1], torch.BoolTensor):
compute_loss = False
if compute_loss:
self.criterion(output, target)
if isinstance(tq, tqdm):
tq.set_description(self.criterion.get_loss_desc())
if self.args.save_results != 'none':
if isinstance(output, (list, tuple)):
result = output[-1] # select last output in a pyramid
elif isinstance(output, torch.Tensor):
result = output
names = batch[-1]
if self.args.save_results == 'part' and compute_loss: # save all when GT not available
indices = batch[-2]
save_ids = [save_id for save_id, idx in enumerate(indices) if idx % 10 == 0]
result = result[save_ids]
names = [names[save_id] for save_id in save_ids]
self.imsaver.save_image(result, names)
if compute_loss:
self.criterion.normalize()
if isinstance(tq, tqdm):
tq.set_description(self.criterion.get_loss_desc())
tq.display(pos=-1) # overwrite with synchronized loss
self.criterion.step()
if self.args.rank == 0:
self.save()
self.imsaver.end_background()
def validate(self, epoch):
self.evaluate(epoch, 'val')
return
def test(self, epoch):
self.evaluate(epoch, 'test')
return
def fill_evaluation(self, epoch, mode=None, force=False):
if epoch <= 0:
return
if mode is not None:
self.mode = mode
do_eval = force
if not force:
loss_missing = epoch not in self.criterion.loss_stat[self.mode]['Total'] # should it switch to all loss types?
metric_missing = False
for metric_type in self.criterion.metric:
if epoch not in self.criterion.metric_stat[mode][metric_type]:
metric_missing = True
do_eval = loss_missing or metric_missing
if do_eval:
try:
self.load(epoch)
self.evaluate(epoch, self.mode)
except:
# print('saved model/optimizer at epoch {} not found!'.format(epoch))
pass
return
|