File size: 5,281 Bytes
8ec10cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import math

import torch
import torch.nn as nn

def default_conv(in_channels, out_channels, kernel_size, bias=True, groups=1):
    return nn.Conv2d(
        in_channels, out_channels, kernel_size,
        padding=(kernel_size // 2), bias=bias, groups=groups)

def default_norm(n_feats):
    return nn.BatchNorm2d(n_feats)

def default_act():
    return nn.ReLU(True)

def empty_h(x, n_feats):
    '''

        create an empty hidden state



        input

            x:      B x T x 3 x H x W



        output

            h:      B x C x H/4 x W/4

    '''
    b = x.size(0)
    h, w = x.size()[-2:]
    return x.new_zeros((b, n_feats, h//4, w//4))

class Normalization(nn.Conv2d):
    """Normalize input tensor value with convolutional layer"""
    def __init__(self, mean=(0, 0, 0), std=(1, 1, 1)):
        super(Normalization, self).__init__(3, 3, kernel_size=1)
        tensor_mean = torch.Tensor(mean)
        tensor_inv_std = torch.Tensor(std).reciprocal()

        self.weight.data = torch.eye(3).mul(tensor_inv_std).view(3, 3, 1, 1)
        self.bias.data = torch.Tensor(-tensor_mean.mul(tensor_inv_std))

        for params in self.parameters():
            params.requires_grad = False

class BasicBlock(nn.Sequential):
    """Convolution layer + Activation layer"""
    def __init__(

        self, in_channels, out_channels, kernel_size, bias=True,

        conv=default_conv, norm=False, act=default_act):

        modules = []
        modules.append(
            conv(in_channels, out_channels, kernel_size, bias=bias))
        if norm: modules.append(norm(out_channels))
        if act: modules.append(act())

        super(BasicBlock, self).__init__(*modules)

class ResBlock(nn.Module):
    def __init__(

        self, n_feats, kernel_size, bias=True,

        conv=default_conv, norm=False, act=default_act):

        super(ResBlock, self).__init__()

        modules = []
        for i in range(2):
            modules.append(conv(n_feats, n_feats, kernel_size, bias=bias))
            if norm: modules.append(norm(n_feats))
            if act and i == 0: modules.append(act())

        self.body = nn.Sequential(*modules)

    def forward(self, x):
        res = self.body(x)
        res += x

        return res

class ResBlock_mobile(nn.Module):
    def __init__(

        self, n_feats, kernel_size, bias=True,

        conv=default_conv, norm=False, act=default_act, dropout=False):

        super(ResBlock_mobile, self).__init__()

        modules = []
        for i in range(2):
            modules.append(conv(n_feats, n_feats, kernel_size, bias=False, groups=n_feats))
            modules.append(conv(n_feats, n_feats, 1, bias=False))
            if dropout and i == 0: modules.append(nn.Dropout2d(dropout))
            if norm: modules.append(norm(n_feats))
            if act and i == 0: modules.append(act())

        self.body = nn.Sequential(*modules)

    def forward(self, x):
        res = self.body(x)
        res += x

        return res

class Upsampler(nn.Sequential):
    def __init__(

        self, scale, n_feats, bias=True,

        conv=default_conv, norm=False, act=False):

        modules = []
        if (scale & (scale - 1)) == 0:    # Is scale = 2^n?
            for _ in range(int(math.log(scale, 2))):
                modules.append(conv(n_feats, 4 * n_feats, 3, bias))
                modules.append(nn.PixelShuffle(2))
                if norm: modules.append(norm(n_feats))
                if act: modules.append(act())
        elif scale == 3:
            modules.append(conv(n_feats, 9 * n_feats, 3, bias))
            modules.append(nn.PixelShuffle(3))
            if norm: modules.append(norm(n_feats))
            if act: modules.append(act())
        else:
            raise NotImplementedError

        super(Upsampler, self).__init__(*modules)

# Only support 1 / 2
class PixelSort(nn.Module):
    """The inverse operation of PixelShuffle

    Reduces the spatial resolution, increasing the number of channels.

    Currently, scale 0.5 is supported only.

    Later, torch.nn.functional.pixel_sort may be implemented.

    Reference:

        http://pytorch.org/docs/0.3.0/_modules/torch/nn/modules/pixelshuffle.html#PixelShuffle

        http://pytorch.org/docs/0.3.0/_modules/torch/nn/functional.html#pixel_shuffle

    """
    def __init__(self, upscale_factor=0.5):
        super(PixelSort, self).__init__()
        self.upscale_factor = upscale_factor

    def forward(self, x):
        b, c, h, w = x.size()
        x = x.view(b, c, 2, 2, h // 2, w // 2)
        x = x.permute(0, 1, 5, 3, 2, 4).contiguous()
        x = x.view(b, 4 * c, h // 2, w // 2)

        return x

class Downsampler(nn.Sequential):
    def __init__(

        self, scale, n_feats, bias=True,

        conv=default_conv, norm=False, act=False):

        modules = []
        if scale == 0.5:
            modules.append(PixelSort())
            modules.append(conv(4 * n_feats, n_feats, 3, bias))
            if norm: modules.append(norm(n_feats))
            if act: modules.append(act())
        else:
            raise NotImplementedError

        super(Downsampler, self).__init__(*modules)