File size: 4,730 Bytes
8ec10cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import re
from importlib import import_module

import torch
import torch.nn as nn
from torch.nn.parallel import DataParallel, DistributedDataParallel

import torch.distributed as dist
from torch.nn.utils import parameters_to_vector, vector_to_parameters

from .discriminator import Discriminator

from utils import interact

class Model(nn.Module):
    def __init__(self, args):
        super(Model, self).__init__()

        self.args = args
        self.device = args.device
        self.n_GPUs = args.n_GPUs
        self.save_dir = os.path.join(args.save_dir, 'models')
        os.makedirs(self.save_dir, exist_ok=True)

        module = import_module('model.' + args.model)

        self.model = nn.ModuleDict()
        self.model.G = module.build_model(args)
        if self.args.loss.lower().find('adv') >= 0:
            self.model.D = Discriminator(self.args)
        else:
            self.model.D = None

        self.to(args.device, dtype=args.dtype, non_blocking=True)
        self.load(args.load_epoch, path=args.pretrained)

    def parallelize(self):
        if self.args.device_type == 'cuda':
            if self.args.distributed:
                Parallel = DistributedDataParallel
                parallel_args = {
                    "device_ids": [self.args.rank],
                    "output_device": self.args.rank,
                }
            else:
                Parallel = DataParallel
                parallel_args = {
                    'device_ids': list(range(self.n_GPUs)),
                    'output_device': self.args.rank # always 0
                }

            for model_key in self.model:
                if self.model[model_key] is not None:
                    self.model[model_key] = Parallel(self.model[model_key], **parallel_args)

    def forward(self, input):
        return self.model.G(input)

    def _save_path(self, epoch):
        model_path = os.path.join(self.save_dir, 'model-{:d}.pt'.format(epoch))
        return model_path

    def state_dict(self):
        state_dict = {}
        for model_key in self.model:
            if self.model[model_key] is not None:
                parallelized = isinstance(self.model[model_key], (DataParallel, DistributedDataParallel))
                if parallelized:
                    state_dict[model_key] = self.model[model_key].module.state_dict()
                else:
                    state_dict[model_key] = self.model[model_key].state_dict()

        return state_dict

    def load_state_dict(self, state_dict, strict=True):
        for model_key in self.model:
            parallelized = isinstance(self.model[model_key], (DataParallel, DistributedDataParallel))
            if model_key in state_dict:
                if parallelized:
                    self.model[model_key].module.load_state_dict(state_dict[model_key], strict)
                else:
                    self.model[model_key].load_state_dict(state_dict[model_key], strict)

    def save(self, epoch):
        torch.save(self.state_dict(), self._save_path(epoch))

    def load(self, epoch=None, path=None):
        if path:
            model_name = path
        elif isinstance(epoch, int):
            if epoch < 0:
                epoch = self.get_last_epoch()
            if epoch == 0:   # epoch 0
                # make sure model parameters are synchronized at initial
                # for multi-node training (not in current implementation)
                # self.synchronize()

                return  # leave model as initialized

            model_name = self._save_path(epoch)
        else:
            raise Exception('no epoch number or model path specified!')

        print('Loading model from {}'.format(model_name))
        state_dict = torch.load(model_name, map_location=self.args.device)
        self.load_state_dict(state_dict)

        return

    def synchronize(self):
        if self.args.distributed:
            # synchronize model parameters across nodes
            vector = parameters_to_vector(self.parameters())

            dist.broadcast(vector, 0)   # broadcast parameters to other processes
            if self.args.rank != 0:
                vector_to_parameters(vector, self.parameters())

            del vector

        return

    def get_last_epoch(self):
        model_list = sorted(os.listdir(self.save_dir))
        if len(model_list) == 0:
            epoch = 0
        else:
            epoch = int(re.findall('\\d+', model_list[-1])[0]) # model example name model-100.pt

        return epoch

    def print(self):
        print(self.model)

        return