File size: 7,915 Bytes
3ef0208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import math
import time
import datetime
from multiprocessing import Process
from multiprocessing import Queue

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

import numpy as np
import imageio

import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lrs

class timer():
    def __init__(self):
        self.acc = 0
        self.tic()

    def tic(self):
        self.t0 = time.time()

    def toc(self, restart=False):
        diff = time.time() - self.t0
        if restart: self.t0 = time.time()
        return diff

    def hold(self):
        self.acc += self.toc()

    def release(self):
        ret = self.acc
        self.acc = 0

        return ret

    def reset(self):
        self.acc = 0

class checkpoint():
    def __init__(self, args):
        self.args = args
        self.ok = True
        self.log = torch.Tensor()
        now = datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S')

        if not args.load:
            if not args.save:
                args.save = now
            self.dir = os.path.join('..', 'experiment', args.save)
        else:
            self.dir = os.path.join('..', 'experiment', args.load)
            if os.path.exists(self.dir):
                self.log = torch.load(self.get_path('psnr_log.pt'))
                print('Continue from epoch {}...'.format(len(self.log)))
            else:
                args.load = ''

        if args.reset:
            os.system('rm -rf ' + self.dir)
            args.load = ''

        os.makedirs(self.dir, exist_ok=True)
        os.makedirs(self.get_path('model'), exist_ok=True)
        for d in args.data_test:
            os.makedirs(self.get_path('results-{}'.format(d)), exist_ok=True)

        open_type = 'a' if os.path.exists(self.get_path('log.txt'))else 'w'
        self.log_file = open(self.get_path('log.txt'), open_type)
        with open(self.get_path('config.txt'), open_type) as f:
            f.write(now + '\n\n')
            for arg in vars(args):
                f.write('{}: {}\n'.format(arg, getattr(args, arg)))
            f.write('\n')

        self.n_processes = 8

    def get_path(self, *subdir):
        return os.path.join(self.dir, *subdir)

    def save(self, trainer, epoch, is_best=False):
        trainer.model.save(self.get_path('model'), epoch, is_best=is_best)
        trainer.loss.save(self.dir)
        trainer.loss.plot_loss(self.dir, epoch)

        self.plot_psnr(epoch)
        trainer.optimizer.save(self.dir)
        torch.save(self.log, self.get_path('psnr_log.pt'))

    def add_log(self, log):
        self.log = torch.cat([self.log, log])

    def write_log(self, log, refresh=False):
        print(log)
        self.log_file.write(log + '\n')
        if refresh:
            self.log_file.close()
            self.log_file = open(self.get_path('log.txt'), 'a')

    def done(self):
        self.log_file.close()

    def plot_psnr(self, epoch):
        axis = np.linspace(1, epoch, epoch)
        for idx_data, d in enumerate(self.args.data_test):
            label = 'SR on {}'.format(d)
            fig = plt.figure()
            plt.title(label)
            for idx_scale, scale in enumerate(self.args.scale):
                plt.plot(
                    axis,
                    self.log[:, idx_data, idx_scale].numpy(),
                    label='Scale {}'.format(scale)
                )
            plt.legend()
            plt.xlabel('Epochs')
            plt.ylabel('PSNR')
            plt.grid(True)
            plt.savefig(self.get_path('test_{}.pdf'.format(d)))
            plt.close(fig)

    def begin_background(self):
        self.queue = Queue()

        def bg_target(queue):
            while True:
                if not queue.empty():
                    filename, tensor = queue.get()
                    if filename is None: break
                    imageio.imwrite(filename, tensor.numpy())
        
        self.process = [
            Process(target=bg_target, args=(self.queue,)) \
            for _ in range(self.n_processes)
        ]
        
        for p in self.process: p.start()

    def end_background(self):
        for _ in range(self.n_processes): self.queue.put((None, None))
        while not self.queue.empty(): time.sleep(1)
        for p in self.process: p.join()

    def save_results(self, dataset, filename, save_list, scale):
        if self.args.save_results:
            filename = self.get_path(
                'results-{}'.format(dataset.dataset.name),
                '{}_x{}_'.format(filename, scale)
            )

            postfix = ('CAR', 'LQ', 'HQ')
            for v, p in zip(save_list, postfix):
                normalized = v[0].mul(255 / self.args.rgb_range)
                tensor_cpu = normalized.byte().permute(1, 2, 0).cpu()
                self.queue.put(('{}{}.png'.format(filename, p), tensor_cpu))

def quantize(img, rgb_range):
    pixel_range = 255 / rgb_range
    return img.mul(pixel_range).clamp(0, 255).round().div(pixel_range)

def calc_psnr(sr, hr, scale, rgb_range, dataset=None):
    if hr.nelement() == 1: return 0

    diff = (sr - hr) / rgb_range
    if dataset and dataset.dataset.benchmark:
        shave = scale
        if diff.size(1) > 5:
            gray_coeffs = [65.738, 129.057, 25.064]
            convert = diff.new_tensor(gray_coeffs).view(1, 3, 1, 1) / 256
            diff = diff.mul(convert).sum(dim=1)
    else:
        shave = scale + 6

    valid = diff[..., :, :]
    mse = valid.pow(2).mean()

    return -10 * math.log10(mse)

def make_optimizer(args, target):
    '''

        make optimizer and scheduler together

    '''
    # optimizer
    trainable = filter(lambda x: x.requires_grad, target.parameters())
    kwargs_optimizer = {'lr': args.lr, 'weight_decay': args.weight_decay}

    if args.optimizer == 'SGD':
        optimizer_class = optim.SGD
        kwargs_optimizer['momentum'] = args.momentum
    elif args.optimizer == 'ADAM':
        optimizer_class = optim.Adam
        kwargs_optimizer['betas'] = args.betas
        kwargs_optimizer['eps'] = args.epsilon
    elif args.optimizer == 'ADAMW':
        optimizer_class = optim.AdamW
        kwargs_optimizer['betas'] = args.betas
        kwargs_optimizer['eps'] = args.epsilon
        kwargs_optimizer["weight_decay"]=0.01
    elif args.optimizer == 'RMSprop':
        optimizer_class = optim.RMSprop
        kwargs_optimizer['eps'] = args.epsilon

    # scheduler
    milestones = list(map(lambda x: int(x), args.decay.split('-')))
    kwargs_scheduler = {'milestones': milestones, 'gamma': args.gamma}
    scheduler_class = lrs.MultiStepLR

    class CustomOptimizer(optimizer_class):
        def __init__(self, *args, **kwargs):
            super(CustomOptimizer, self).__init__(*args, **kwargs)

        def _register_scheduler(self, scheduler_class, **kwargs):
            self.scheduler = scheduler_class(self, **kwargs)

        def save(self, save_dir):
            torch.save(self.state_dict(), self.get_dir(save_dir))

        def load(self, load_dir, epoch=1):
            self.load_state_dict(torch.load(self.get_dir(load_dir)))
            if epoch > 1:
                for _ in range(epoch): self.scheduler.step()

        def get_dir(self, dir_path):
            return os.path.join(dir_path, 'optimizer.pt')

        def schedule(self):
            self.scheduler.step()

        def get_lr(self):
            return self.scheduler.get_lr()[0]

        def get_last_epoch(self):
            return self.scheduler.last_epoch
    
    optimizer = CustomOptimizer(trainable, **kwargs_optimizer)
    optimizer._register_scheduler(scheduler_class, **kwargs_scheduler)
    return optimizer