File size: 3,125 Bytes
3ef0208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

def default_conv(in_channels, out_channels, kernel_size,stride=1, bias=True):
    return nn.Conv2d(
        in_channels, out_channels, kernel_size,
        padding=(kernel_size//2),stride=stride, bias=bias)

def spectral_conv(in_channels, out_channels, kernel_size,stride=1, bias=True):
    return nn.utils.spectral_norm(nn.Conv2d(
        in_channels, out_channels, kernel_size,
        padding=(kernel_size//2),stride=stride, bias=bias))

class MeanShift(nn.Conv2d):
    def __init__(

        self, rgb_range,

        rgb_mean=(0.4488, 0.4371, 0.4040), rgb_std=(1.0, 1.0, 1.0), sign=-1):

        super(MeanShift, self).__init__(3, 3, kernel_size=1)
        std = torch.Tensor(rgb_std)
        self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1)
        self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) / std
        for p in self.parameters():
            p.requires_grad = False

class BasicBlock(nn.Sequential):
    def __init__(

        self, conv, in_channels, out_channels, kernel_size, stride=1, bias=True,

        bn=False, act=nn.PReLU()):

        m = [conv(in_channels, out_channels, kernel_size, bias=bias)]
        if bn:
            m.append(nn.BatchNorm2d(out_channels))
        if act is not None:
            m.append(act)

        super(BasicBlock, self).__init__(*m)

class ResBlock(nn.Module):
    def __init__(

        self, conv, n_feats, kernel_size,

        bias=True, bn=False, act=nn.PReLU(), res_scale=1):

        super(ResBlock, self).__init__()
        m = []
        for i in range(2):
            m.append(conv(n_feats, n_feats, kernel_size, bias=bias))
            if bn:
                m.append(nn.BatchNorm2d(n_feats))
            if i == 0:
                m.append(act)

        self.body = nn.Sequential(*m)
        self.res_scale = res_scale

    def forward(self, x):
        res = self.body(x).mul(self.res_scale)
        res += x

        return res

class Upsampler(nn.Sequential):
    def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True):

        m = []
        if (scale & (scale - 1)) == 0:    # Is scale = 2^n?
            for _ in range(int(math.log(scale, 2))):
                m.append(conv(n_feats, 4 * n_feats, 3, bias))
                m.append(nn.PixelShuffle(2))
                if bn:
                    m.append(nn.BatchNorm2d(n_feats))
                if act == 'relu':
                    m.append(nn.ReLU(True))
                elif act == 'prelu':
                    m.append(nn.PReLU(n_feats))

        elif scale == 3:
            m.append(conv(n_feats, 9 * n_feats, 3, bias))
            m.append(nn.PixelShuffle(3))
            if bn:
                m.append(nn.BatchNorm2d(n_feats))
            if act == 'relu':
                m.append(nn.ReLU(True))
            elif act == 'prelu':
                m.append(nn.PReLU(n_feats))
        else:
            raise NotImplementedError

        super(Upsampler, self).__init__(*m)