ppo-LunarLander-v2 / config.json
hwting's picture
Upload PPO LunarLander-v2 trained agent
b748840 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7be8eb37ce50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be8eb37cee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be8eb37cf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be8eb37d000>", "_build": "<function ActorCriticPolicy._build at 0x7be8eb37d090>", "forward": "<function ActorCriticPolicy.forward at 0x7be8eb37d120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be8eb37d1b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be8eb37d240>", "_predict": "<function ActorCriticPolicy._predict at 0x7be8eb37d2d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be8eb37d360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be8eb37d3f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be8eb37d480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7be88d831300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732946995035757550, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPuOD4/MUU/E5IQvIvclb7y77I98+wlvQAAAAAAAAAAGs0TPeFosroDElUzIQiWr2WpaDj7NcuzAACAPwAAgD8zA4W8CKjQPrlNJL7ujFy+4DF1vWIA5LwAAAAAAAAAAPMCmD3iDjs+Q/bPvS55W77ILOI7VSJZvQAAAAAAAAAAWu4zvprHVD/qq1U7VhxzvuPNYr3dgFY8AAAAAAAAAABAfoI9nL6hP5qLgD1/47G+14CqPUDE1bwAAAAAAAAAABq8PD7gkLI+JgeQvuO7WL55v4C9P3XFvQAAAAAAAAAAAOpfPa3RoD+yoG8+5UC4vlNz0T1xBgA+AAAAAAAAAAB45rS+BuljP3B6sb7bfny+J9+Evv+sIr0AAAAAAAAAAG2mBb7PLF8+wDf6PQNxf74Qnle9Cy8SPQAAAAAAAAAAmt4ZvTZTNLyIKco7OjX0O4Ayoz3aMci8AACAPwAAgD+zwgy9KUBDumISkDnrlVY0u32eugakqbgAAIA/AACAP+tYor4X2Co/ssRiPrIDHL6vPra9umw9PQAAAAAAAAAA2ivyvbi+zT5rRrY+va5lvqUduz10Wo48AAAAAAAAAADN/Hc9uyu/vLzgHj1K+XO9SYgGvv4osL4AAIA/AACAPzrLaT7US+C8Id2VO91iAbqhKkW+UXjHugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE4J65Xlr/OMAWyUTQ4BjAF0lEdAlLJe5SWJJ3V9lChoBkdAcj86uGKyfWgHTb8BaAhHQJS1nTmW+oN1fZQoaAZHQGvsp4rz5GloB01oAWgIR0CUtao+wC8wdX2UKGgGR0Bx3xsenyd4aAdN5QFoCEdAlLbS/wiJO3V9lChoBkdAbgJaouPFN2gHTRgCaAhHQJTBu+yquKZ1fZQoaAZHQGyA5RTCLuRoB01mAWgIR0CUwpci4axYdX2UKGgGR0Bx1IdHUc4paAdN/gFoCEdAlMRs9Oh0yXV9lChoBkdAbrVxFRYRumgHTUIBaAhHQJTFEmICU5d1fZQoaAZHQHGVYqCpWFNoB01/AWgIR0CUxvQT238XdX2UKGgGR0Bx8U6tDD0laAdNxQJoCEdAlMcppBX0XnV9lChoBkdAc3IrdnCfpWgHTYQBaAhHQJTKZ5TqB3B1fZQoaAZHQHFUHxaxHG1oB01eAmgIR0CUyuKA8SwodX2UKGgGR0Bi3AU1yeZoaAdN6ANoCEdAlM5ya3I+4nV9lChoBkdAb4XKYiPhh2gHTakBaAhHQJTPz6tT1kF1fZQoaAZHQG1ozaK1og5oB004AWgIR0CU5nk2xY7rdX2UKGgGR0BwfR90A93baAdN8QFoCEdAlOcYqCpWFXV9lChoBkdAZ0AyAxzq8mgHTegDaAhHQJTnJHxz7uV1fZQoaAZHQGstJ1RtP55oB01XA2gIR0CU6cPI4lyBdX2UKGgGR0BxaCUY8+zMaAdNcAFoCEdAlOnRM8HObHV9lChoBkdAbpqtWdVebGgHTU8BaAhHQJTq2K2rn1Z1fZQoaAZHQG757Vz6rNpoB01TAWgIR0CU6y2q1gIAdX2UKGgGR0Bst+EEkjX4aAdNRQFoCEdAlO0OyquKXXV9lChoBkdAcGnmplz2e2gHTaQBaAhHQJTtGY4Qz1t1fZQoaAZHQGtXDiGWUr1oB01hAWgIR0CU7bt8/lhgdX2UKGgGR0BxI9C1JDmbaAdNygFoCEdAlO6907r9l3V9lChoBkdAcCvES/TLGWgHTd0CaAhHQJTv5jPOY6Z1fZQoaAZHQGBi5Z0Syt5oB03oA2gIR0CU8HzErGzbdX2UKGgGR0A8bKHO8kD7aAdNEAFoCEdAlPVYA4n4PHV9lChoBkdAccOl7+kxh2gHTUkBaAhHQJT1iF/QSjB1fZQoaAZHQHIEidrftQdoB03KAWgIR0CU9bT4L1EmdX2UKGgGR0BmEfI+4b0faAdN6ANoCEdAlPXDollbvHV9lChoBkdAbsNDuSfUWmgHTbIBaAhHQJT13yauwHJ1fZQoaAZHQHKmhHG0eEJoB01rAWgIR0CU+erJ8v25dX2UKGgGR0BwQoAYHgP3aAdNZAFoCEdAlPrZi7TUiXV9lChoBkdAbvXVwPy08mgHTX8BaAhHQJT88580DU51fZQoaAZHQHDVK7iADq5oB01UAWgIR0CU/gLM9r44dX2UKGgGR0Bu+3hhpg1FaAdN6gFoCEdAlP4biIcin3V9lChoBkdAcFSGfwqiGmgHTUsBaAhHQJT+vxoZhrp1fZQoaAZHQHEXOs90RvpoB02IAWgIR0CU/0nEl3QldX2UKGgGR0Bws4pZwGW2aAdNuwFoCEdAlQEuBYmsvXV9lChoBkdAboeJZ4fOlmgHTWkBaAhHQJUBvoaDPGB1fZQoaAZHQHECgbEP1+RoB02LAWgIR0CVAmRzijtYdX2UKGgGR0BwjrC9AX2vaAdNLgFoCEdAlQOm4/eLvXV9lChoBkdAbZVt+CsfaGgHTTEBaAhHQJUDsnTiKix1fZQoaAZHQG+Hq0dBBzFoB00/AWgIR0CVBBLkjopydX2UKGgGR0BwvUyWRigCaAdNZgFoCEdAlQVIzJp35nV9lChoBkdAbOgVclgMMWgHTXsBaAhHQJUGPV9Wp611fZQoaAZHQHCnTnaFmFtoB01qAWgIR0CVCOahHskZdX2UKGgGR0BxnVtKqXF+aAdNMgFoCEdAlQpRAOavzXV9lChoBkdAcLw25xzaK2gHTWIBaAhHQJULlJd0JWx1fZQoaAZHQG30992HLzRoB02kAWgIR0CVDDTCtRvWdX2UKGgGR0BwIxOdoWYXaAdNlwFoCEdAlQ0zFyaNM3V9lChoBkdAcj+Gx2SuAGgHTZMBaAhHQJUN9ylvZRN1fZQoaAZHQG98RVhkRSRoB01KAWgIR0CVD8rtVrAQdX2UKGgGR0BvCfq1PWQPaAdNqgFoCEdAlRCAdXDFZXV9lChoBkdAcbjUL2HtW2gHTXgBaAhHQJURFE7W/ah1fZQoaAZHQGZNkvboKUpoB03oA2gIR0CVEjqRlpXZdX2UKGgGR0BwNnFXJYDDaAdNZAFoCEdAlRJqdMCcPXV9lChoBkdAcQ92SdOIqWgHTUkBaAhHQJUk+Mzdk8R1fZQoaAZHQG2ggxi5NGpoB03AAWgIR0CVJTlz2exwdX2UKGgGR0Bu6tdHDrJKaAdNhwFoCEdAlSXe0Xxe9nV9lChoBkdAcPohCMPz4GgHTTQBaAhHQJUqVbyH2yt1fZQoaAZHQHCBJ8WsRxtoB00tAWgIR0CVLcRxLkCFdX2UKGgGR0BuH+3pfQa8aAdNRAFoCEdAlS3qsIVuaXV9lChoBkdAcL4gZCOWB2gHTZYBaAhHQJUubQswtap1fZQoaAZHQHCGmwu/UONoB01AAWgIR0CVL/sd1dPddX2UKGgGR0BvaPbwjMV2aAdNegFoCEdAlTBjZcs19HV9lChoBkdAcs2bn5i3HGgHTUUBaAhHQJUyJq20AtF1fZQoaAZHQHIBZCa7VaxoB01tAmgIR0CVMjNZ/0/XdX2UKGgGR0ByrfEYO2AoaAdNUAFoCEdAlTMnhfjS5XV9lChoBkdAcCzB7u2JBWgHTWEBaAhHQJU0Yuh9LHx1fZQoaAZHQG822mpEQXhoB00zAWgIR0CVNN5prULEdX2UKGgGR0BxqKOq//NraAdNYAFoCEdAlTWQSFoL5XV9lChoBkdAcL+THsC1Z2gHTUYBaAhHQJU59x7zCk51fZQoaAZHQHB2/sZ5zHVoB03PAWgIR0CVOih37k4ndX2UKGgGR0Bt5VvQ4S6EaAdNxQFoCEdAlTrZ9/jKgnV9lChoBkdAcavGz8gp0GgHTTwBaAhHQJU8AINVinZ1fZQoaAZHQGqsUNjLB9FoB00zAWgIR0CVPAwPiDNAdX2UKGgGR0BN6nzpX6qLaAdNCwFoCEdAlT1pY1YQrnV9lChoBkdAcgnZHd43WGgHTU8BaAhHQJU+VaNdZ7p1fZQoaAZHQHERWphnanJoB00dAWgIR0CVP0EFW4mUdX2UKGgGR0BxCTx8UmD2aAdNZgFoCEdAlT+YuCf6GnV9lChoBkdAcoLHz6JqI2gHTUoBaAhHQJVACP4mCy11fZQoaAZHQHFZ/wZwXIloB01GAWgIR0CVQrN21UlzdX2UKGgGR0BwUibiIcioaAdNZQFoCEdAlUN/d69kBnV9lChoBkdAcIO/NZ/0/WgHTQcCaAhHQJVEjf4yoGZ1fZQoaAZHQF3ei6QNkOJoB03oA2gIR0CVRR0FbFCLdX2UKGgGR0ByLBoDgZTAaAdNcQFoCEdAlUU3NorWiHV9lChoBkdATMa+ajN6gWgHS/toCEdAlUed7fHgg3V9lChoBkdAbFDDKHO8kGgHTWwBaAhHQJVJA7r9l3B1fZQoaAZHQHKxJhvze41oB01dAWgIR0CVSSyGi5/cdX2UKGgGR0BweNAZ88cNaAdNVAFoCEdAlUnXHvMKTnV9lChoBkdAcK9s8gZCOWgHTZABaAhHQJVKlQl8gIR1fZQoaAZHQHEvUPQOWjZoB00nAWgIR0CVS1j8UEgXdX2UKGgGR0BxSqW3Sa3JaAdNVwFoCEdAlUwGhqTKT3V9lChoBkdAcgn8cdYGMWgHTTMBaAhHQJVMML+glGB1fZQoaAZHQGtRv3ztkWhoB02dAWgIR0CVTI4zrNW3dX2UKGgGR0BxlQunMt9QaAdNhwFoCEdAlU41PSDyv3V9lChoBkdAcl4PMjeKsWgHTUEBaAhHQJVOszj3mFJ1fZQoaAZHQHHm4D5j6N5oB00wAWgIR0CVT5eTmnwYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}