huudan123 commited on
Commit
b2fc1f1
·
verified ·
1 Parent(s): 4dd01a6

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: huudan123/model_stage1
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:183796
24
+ - loss:MultipleNegativesRankingLoss
25
+ widget:
26
+ - source_sentence: nếu thời_gian đến mà họ phải có một cuộc đấu_tranh johny shanon
27
+ có_thể là một người ngạc_nhiên
28
+ sentences:
29
+ - johny nghĩ anh ta là người giỏi nhất trong thị_trấn
30
+ - nếu một cuộc đấu_tranh đã xảy ra johny có_thể ngạc_nhiên đấy
31
+ - tất_cả bằng_chứng về văn_hóa từ xã_hội của umbria đã bị mất
32
+ - source_sentence: chèn jay leno đùa ở đây
33
+ sentences:
34
+ - mathews đã chỉ ra rằng sẽ không cần phải tuyển_dụng luật_sư địa_phương
35
+ - đây là nơi mà một trò_đùa jay leno sẽ đi
36
+ - jay leno không phải là một diễn_viên hài
37
+ - source_sentence: đúng_vậy tất_cả là lỗi của họ
38
+ sentences:
39
+ - bạn bị giới_hạn bởi số_lượng bộ_nhớ bạn đã có
40
+ - phải tất_cả đều là lỗi của họ
41
+ - rõ_ràng là tất_cả những lỗi của công_nhân
42
+ - source_sentence: 6 mặc_dù mỗi cơ_quan phát_triển và triển_khai các thỏa_thuận hiệu_quả
43
+ phản_ánh các ưu_tiên tổ_chức cụ_thể cấu_trúc và nền văn_hóa các thỏa_thuận hiệu_quả
44
+ đã gặp các đặc_điểm sau
45
+ sentences:
46
+ - các thỏa_thuận hiệu_quả đã được phát_hành từ mỗi đại_lý
47
+ - kế_hoạch hiệu_quả loại_trừ bất_cứ điều gì để làm với các cấu_trúc
48
+ - không có gì bên trong sảnh trên đồi cả
49
+ - source_sentence: hay na uy hay gì đó
50
+ sentences:
51
+ - na uy hay cái gì đó khác
52
+ - điều đó hoàn_toàn không đúng
53
+ - na uy hoặc từ một trong những quốc_gia scandinavia
54
+ model-index:
55
+ - name: SentenceTransformer based on huudan123/model_stage1
56
+ results:
57
+ - task:
58
+ type: semantic-similarity
59
+ name: Semantic Similarity
60
+ dataset:
61
+ name: sts evaluator
62
+ type: sts-evaluator
63
+ metrics:
64
+ - type: pearson_cosine
65
+ value: 0.6226455838221948
66
+ name: Pearson Cosine
67
+ - type: spearman_cosine
68
+ value: 0.6239946992753639
69
+ name: Spearman Cosine
70
+ - type: pearson_manhattan
71
+ value: 0.6231879679103853
72
+ name: Pearson Manhattan
73
+ - type: spearman_manhattan
74
+ value: 0.6202067944452505
75
+ name: Spearman Manhattan
76
+ - type: pearson_euclidean
77
+ value: 0.6205946270842417
78
+ name: Pearson Euclidean
79
+ - type: spearman_euclidean
80
+ value: 0.6173651180463325
81
+ name: Spearman Euclidean
82
+ - type: pearson_dot
83
+ value: 0.5765586426966922
84
+ name: Pearson Dot
85
+ - type: spearman_dot
86
+ value: 0.578322119134053
87
+ name: Spearman Dot
88
+ - type: pearson_max
89
+ value: 0.6231879679103853
90
+ name: Pearson Max
91
+ - type: spearman_max
92
+ value: 0.6239946992753639
93
+ name: Spearman Max
94
+ ---
95
+
96
+ # SentenceTransformer based on huudan123/model_stage1
97
+
98
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [huudan123/model_stage1](https://huggingface.co/huudan123/model_stage1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
99
+
100
+ ## Model Details
101
+
102
+ ### Model Description
103
+ - **Model Type:** Sentence Transformer
104
+ - **Base model:** [huudan123/model_stage1](https://huggingface.co/huudan123/model_stage1) <!-- at revision b7466e583ac080b4f544522adb1647a976398ea1 -->
105
+ - **Maximum Sequence Length:** 512 tokens
106
+ - **Output Dimensionality:** 768 tokens
107
+ - **Similarity Function:** Cosine Similarity
108
+ <!-- - **Training Dataset:** Unknown -->
109
+ <!-- - **Language:** Unknown -->
110
+ <!-- - **License:** Unknown -->
111
+
112
+ ### Model Sources
113
+
114
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
115
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
116
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
117
+
118
+ ### Full Model Architecture
119
+
120
+ ```
121
+ SentenceTransformer(
122
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
123
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
124
+ )
125
+ ```
126
+
127
+ ## Usage
128
+
129
+ ### Direct Usage (Sentence Transformers)
130
+
131
+ First install the Sentence Transformers library:
132
+
133
+ ```bash
134
+ pip install -U sentence-transformers
135
+ ```
136
+
137
+ Then you can load this model and run inference.
138
+ ```python
139
+ from sentence_transformers import SentenceTransformer
140
+
141
+ # Download from the 🤗 Hub
142
+ model = SentenceTransformer("huudan123/model_stage2_1436")
143
+ # Run inference
144
+ sentences = [
145
+ 'hay na uy hay gì đó',
146
+ 'na uy hoặc từ một trong những quốc_gia scandinavia',
147
+ 'na uy hay cái gì đó khác',
148
+ ]
149
+ embeddings = model.encode(sentences)
150
+ print(embeddings.shape)
151
+ # [3, 768]
152
+
153
+ # Get the similarity scores for the embeddings
154
+ similarities = model.similarity(embeddings, embeddings)
155
+ print(similarities.shape)
156
+ # [3, 3]
157
+ ```
158
+
159
+ <!--
160
+ ### Direct Usage (Transformers)
161
+
162
+ <details><summary>Click to see the direct usage in Transformers</summary>
163
+
164
+ </details>
165
+ -->
166
+
167
+ <!--
168
+ ### Downstream Usage (Sentence Transformers)
169
+
170
+ You can finetune this model on your own dataset.
171
+
172
+ <details><summary>Click to expand</summary>
173
+
174
+ </details>
175
+ -->
176
+
177
+ <!--
178
+ ### Out-of-Scope Use
179
+
180
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
181
+ -->
182
+
183
+ ## Evaluation
184
+
185
+ ### Metrics
186
+
187
+ #### Semantic Similarity
188
+ * Dataset: `sts-evaluator`
189
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
190
+
191
+ | Metric | Value |
192
+ |:-------------------|:----------|
193
+ | pearson_cosine | 0.6226 |
194
+ | spearman_cosine | 0.624 |
195
+ | pearson_manhattan | 0.6232 |
196
+ | spearman_manhattan | 0.6202 |
197
+ | pearson_euclidean | 0.6206 |
198
+ | spearman_euclidean | 0.6174 |
199
+ | pearson_dot | 0.5766 |
200
+ | spearman_dot | 0.5783 |
201
+ | pearson_max | 0.6232 |
202
+ | **spearman_max** | **0.624** |
203
+
204
+ <!--
205
+ ## Bias, Risks and Limitations
206
+
207
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
208
+ -->
209
+
210
+ <!--
211
+ ### Recommendations
212
+
213
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
214
+ -->
215
+
216
+ ## Training Details
217
+
218
+ ### Training Hyperparameters
219
+ #### Non-Default Hyperparameters
220
+
221
+ - `overwrite_output_dir`: True
222
+ - `eval_strategy`: epoch
223
+ - `per_device_train_batch_size`: 256
224
+ - `per_device_eval_batch_size`: 256
225
+ - `num_train_epochs`: 15
226
+ - `warmup_ratio`: 0.1
227
+ - `fp16`: True
228
+ - `load_best_model_at_end`: True
229
+ - `gradient_checkpointing`: True
230
+
231
+ #### All Hyperparameters
232
+ <details><summary>Click to expand</summary>
233
+
234
+ - `overwrite_output_dir`: True
235
+ - `do_predict`: False
236
+ - `eval_strategy`: epoch
237
+ - `prediction_loss_only`: True
238
+ - `per_device_train_batch_size`: 256
239
+ - `per_device_eval_batch_size`: 256
240
+ - `per_gpu_train_batch_size`: None
241
+ - `per_gpu_eval_batch_size`: None
242
+ - `gradient_accumulation_steps`: 1
243
+ - `eval_accumulation_steps`: None
244
+ - `learning_rate`: 5e-05
245
+ - `weight_decay`: 0.0
246
+ - `adam_beta1`: 0.9
247
+ - `adam_beta2`: 0.999
248
+ - `adam_epsilon`: 1e-08
249
+ - `max_grad_norm`: 1.0
250
+ - `num_train_epochs`: 15
251
+ - `max_steps`: -1
252
+ - `lr_scheduler_type`: linear
253
+ - `lr_scheduler_kwargs`: {}
254
+ - `warmup_ratio`: 0.1
255
+ - `warmup_steps`: 0
256
+ - `log_level`: passive
257
+ - `log_level_replica`: warning
258
+ - `log_on_each_node`: True
259
+ - `logging_nan_inf_filter`: True
260
+ - `save_safetensors`: True
261
+ - `save_on_each_node`: False
262
+ - `save_only_model`: False
263
+ - `restore_callback_states_from_checkpoint`: False
264
+ - `no_cuda`: False
265
+ - `use_cpu`: False
266
+ - `use_mps_device`: False
267
+ - `seed`: 42
268
+ - `data_seed`: None
269
+ - `jit_mode_eval`: False
270
+ - `use_ipex`: False
271
+ - `bf16`: False
272
+ - `fp16`: True
273
+ - `fp16_opt_level`: O1
274
+ - `half_precision_backend`: auto
275
+ - `bf16_full_eval`: False
276
+ - `fp16_full_eval`: False
277
+ - `tf32`: None
278
+ - `local_rank`: 0
279
+ - `ddp_backend`: None
280
+ - `tpu_num_cores`: None
281
+ - `tpu_metrics_debug`: False
282
+ - `debug`: []
283
+ - `dataloader_drop_last`: False
284
+ - `dataloader_num_workers`: 0
285
+ - `dataloader_prefetch_factor`: None
286
+ - `past_index`: -1
287
+ - `disable_tqdm`: False
288
+ - `remove_unused_columns`: True
289
+ - `label_names`: None
290
+ - `load_best_model_at_end`: True
291
+ - `ignore_data_skip`: False
292
+ - `fsdp`: []
293
+ - `fsdp_min_num_params`: 0
294
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
295
+ - `fsdp_transformer_layer_cls_to_wrap`: None
296
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
297
+ - `deepspeed`: None
298
+ - `label_smoothing_factor`: 0.0
299
+ - `optim`: adamw_torch
300
+ - `optim_args`: None
301
+ - `adafactor`: False
302
+ - `group_by_length`: False
303
+ - `length_column_name`: length
304
+ - `ddp_find_unused_parameters`: None
305
+ - `ddp_bucket_cap_mb`: None
306
+ - `ddp_broadcast_buffers`: False
307
+ - `dataloader_pin_memory`: True
308
+ - `dataloader_persistent_workers`: False
309
+ - `skip_memory_metrics`: True
310
+ - `use_legacy_prediction_loop`: False
311
+ - `push_to_hub`: False
312
+ - `resume_from_checkpoint`: None
313
+ - `hub_model_id`: None
314
+ - `hub_strategy`: every_save
315
+ - `hub_private_repo`: False
316
+ - `hub_always_push`: False
317
+ - `gradient_checkpointing`: True
318
+ - `gradient_checkpointing_kwargs`: None
319
+ - `include_inputs_for_metrics`: False
320
+ - `eval_do_concat_batches`: True
321
+ - `fp16_backend`: auto
322
+ - `push_to_hub_model_id`: None
323
+ - `push_to_hub_organization`: None
324
+ - `mp_parameters`:
325
+ - `auto_find_batch_size`: False
326
+ - `full_determinism`: False
327
+ - `torchdynamo`: None
328
+ - `ray_scope`: last
329
+ - `ddp_timeout`: 1800
330
+ - `torch_compile`: False
331
+ - `torch_compile_backend`: None
332
+ - `torch_compile_mode`: None
333
+ - `dispatch_batches`: None
334
+ - `split_batches`: None
335
+ - `include_tokens_per_second`: False
336
+ - `include_num_input_tokens_seen`: False
337
+ - `neftune_noise_alpha`: None
338
+ - `optim_target_modules`: None
339
+ - `batch_eval_metrics`: False
340
+ - `eval_on_start`: False
341
+ - `batch_sampler`: batch_sampler
342
+ - `multi_dataset_batch_sampler`: proportional
343
+
344
+ </details>
345
+
346
+ ### Training Logs
347
+ | Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max |
348
+ |:------:|:----:|:-------------:|:------:|:--------------------------:|
349
+ | 0 | 0 | - | - | 0.6283 |
350
+ | 0.6964 | 500 | 4.3237 | - | - |
351
+ | 1.0 | 718 | - | 2.3703 | 0.6500 |
352
+ | 1.3928 | 1000 | 2.2259 | - | - |
353
+ | 2.0 | 1436 | - | 2.2597 | 0.6240 |
354
+
355
+
356
+ ### Framework Versions
357
+ - Python: 3.10.12
358
+ - Sentence Transformers: 3.0.1
359
+ - Transformers: 4.42.4
360
+ - PyTorch: 2.3.1+cu121
361
+ - Accelerate: 0.33.0
362
+ - Datasets: 2.20.0
363
+ - Tokenizers: 0.19.1
364
+
365
+ ## Citation
366
+
367
+ ### BibTeX
368
+
369
+ #### Sentence Transformers
370
+ ```bibtex
371
+ @inproceedings{reimers-2019-sentence-bert,
372
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
373
+ author = "Reimers, Nils and Gurevych, Iryna",
374
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
375
+ month = "11",
376
+ year = "2019",
377
+ publisher = "Association for Computational Linguistics",
378
+ url = "https://arxiv.org/abs/1908.10084",
379
+ }
380
+ ```
381
+
382
+ #### MultipleNegativesRankingLoss
383
+ ```bibtex
384
+ @misc{henderson2017efficient,
385
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
386
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
387
+ year={2017},
388
+ eprint={1705.00652},
389
+ archivePrefix={arXiv},
390
+ primaryClass={cs.CL}
391
+ }
392
+ ```
393
+
394
+ <!--
395
+ ## Glossary
396
+
397
+ *Clearly define terms in order to be accessible across audiences.*
398
+ -->
399
+
400
+ <!--
401
+ ## Model Card Authors
402
+
403
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
404
+ -->
405
+
406
+ <!--
407
+ ## Model Card Contact
408
+
409
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
410
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<mask>": 64000
3
+ }
bpe.codes ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./output/checkpoint-1436",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 258,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "tokenizer_class": "PhobertTokenizer",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.4",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 64001
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9898b2c3538ad65c1fca180d9963c4598cb1f5e688c97c60d4f67b0b931e524d
3
+ size 540015464
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "64000": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "PhobertTokenizer",
53
+ "unk_token": "<unk>"
54
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff