Commit
·
5d62ad2
1
Parent(s):
3686e65
updated the How to use section so that the code actually does what the live demo does (#4)
Browse files- updated the How to use section so that the code actually does what the live demo does (199695c904a49dc957f737821c2ada065c8d4517)
- swtiched to YolosImageProcessor (bbd712b25cecec17f9a487f38096f55db7285a9f)
Co-authored-by: Srinivas Gorur-Shandilya <[email protected]>
README.md
CHANGED
@@ -35,22 +35,34 @@ You can use the raw model for object detection. See the [model hub](https://hugg
|
|
35 |
Here is how to use this model:
|
36 |
|
37 |
```python
|
38 |
-
from transformers import
|
39 |
from PIL import Image
|
|
|
40 |
import requests
|
41 |
|
42 |
-
url =
|
43 |
image = Image.open(requests.get(url, stream=True).raw)
|
44 |
|
45 |
-
feature_extractor = YolosFeatureExtractor.from_pretrained('hustvl/yolos-tiny')
|
46 |
model = YolosForObjectDetection.from_pretrained('hustvl/yolos-tiny')
|
|
|
47 |
|
48 |
-
inputs =
|
49 |
outputs = model(**inputs)
|
50 |
|
51 |
# model predicts bounding boxes and corresponding COCO classes
|
52 |
logits = outputs.logits
|
53 |
bboxes = outputs.pred_boxes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
```
|
55 |
|
56 |
Currently, both the feature extractor and model support PyTorch.
|
|
|
35 |
Here is how to use this model:
|
36 |
|
37 |
```python
|
38 |
+
from transformers import YolosImageProcessor, YolosForObjectDetection
|
39 |
from PIL import Image
|
40 |
+
import torch
|
41 |
import requests
|
42 |
|
43 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
44 |
image = Image.open(requests.get(url, stream=True).raw)
|
45 |
|
|
|
46 |
model = YolosForObjectDetection.from_pretrained('hustvl/yolos-tiny')
|
47 |
+
image_processor = YolosImageProcessor.from_pretrained("hustvl/yolos-tiny")
|
48 |
|
49 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
50 |
outputs = model(**inputs)
|
51 |
|
52 |
# model predicts bounding boxes and corresponding COCO classes
|
53 |
logits = outputs.logits
|
54 |
bboxes = outputs.pred_boxes
|
55 |
+
|
56 |
+
|
57 |
+
# print results
|
58 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
59 |
+
results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0]
|
60 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
61 |
+
box = [round(i, 2) for i in box.tolist()]
|
62 |
+
print(
|
63 |
+
f"Detected {model.config.id2label[label.item()]} with confidence "
|
64 |
+
f"{round(score.item(), 3)} at location {box}"
|
65 |
+
)
|
66 |
```
|
67 |
|
68 |
Currently, both the feature extractor and model support PyTorch.
|