File size: 5,847 Bytes
9e3a1e6 aab9c36 9e3a1e6 e921a77 9e3a1e6 86b0693 9e3a1e6 e58cae3 9e3a1e6 e58cae3 9e3a1e6 e921a77 9e3a1e6 16ee18e 9e3a1e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
[paths]
parser_model = "models/hu_core_news_md-parser-3.8.0/model-best"
ner_model = "models/hu_core_news_md-ner-3.8.0/model-best"
lemmatizer_lookups = "models/hu_core_news_md-lookup-lemmatizer-3.8.0"
tagger_model = "models/hu_core_news_md-tagger-3.8.0/model-best"
train = null
dev = null
vectors = null
init_tok2vec = null
[system]
seed = 0
gpu_allocator = null
[nlp]
lang = "hu"
pipeline = ["tok2vec","senter","tagger","morphologizer","lookup_lemmatizer","trainable_lemmatizer","parser","ner"]
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
batch_size = 1000
vectors = {"@vectors":"spacy.Vectors.v1"}
[components]
[components.lookup_lemmatizer]
factory = "hu.lookup_lemmatizer"
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
source = ${paths.lemmatizer_lookups}
[components.morphologizer]
factory = "morphologizer"
extend = false
label_smoothing = 0.0
overwrite = true
scorer = {"@scorers":"spacy.morphologizer_scorer.v1"}
[components.morphologizer.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.morphologizer.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = 100
upstream = "*"
[components.ner]
factory = "beam_ner"
beam_density = 0.01
beam_update_prob = 1
beam_width = 32
incorrect_spans_key = null
moves = null
scorer = {"@scorers":"spacy.ner_scorer.v1"}
update_with_oracle_cut_size = 100
[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = true
nO = null
[components.ner.model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[components.ner.model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 100
attrs = ["LOWER","PREFIX","SUFFIX","SHAPE"]
rows = [5000,2500,2500,2500]
include_static_vectors = true
[components.ner.model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 100
depth = 4
window_size = 2
maxout_pieces = 5
[components.parser]
factory = "parser"
learn_tokens = false
min_action_freq = 5
moves = null
scorer = {"@scorers":"spacy.parser_scorer.v1"}
update_with_oracle_cut_size = 100
[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 512
maxout_pieces = 3
use_upper = true
nO = null
[components.parser.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = 100
upstream = "*"
[components.senter]
factory = "senter"
overwrite = false
scorer = {"@scorers":"spacy.senter_scorer.v1"}
[components.senter.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.senter.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = 100
upstream = "*"
[components.tagger]
factory = "tagger"
label_smoothing = 0.0
neg_prefix = "!"
overwrite = false
scorer = {"@scorers":"spacy.tagger_scorer.v1"}
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = 100
upstream = "*"
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v2"
[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 100
attrs = ["LOWER","PREFIX","SUFFIX","SHAPE"]
rows = [5000,2500,2500,2500]
include_static_vectors = true
[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 100
depth = 4
window_size = 2
maxout_pieces = 5
[components.trainable_lemmatizer]
factory = "trainable_lemmatizer_v2"
backoff = "orth"
min_tree_freq = 1
overwrite = false
overwrite_labels = true
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
top_k = 3
[components.trainable_lemmatizer.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.trainable_lemmatizer.model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[components.trainable_lemmatizer.model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 100
attrs = ["LOWER","PREFIX","SUFFIX","SHAPE"]
rows = [5000,2500,2500,2500]
include_static_vectors = true
[components.trainable_lemmatizer.model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 100
depth = 4
window_size = 2
maxout_pieces = 5
[corpora]
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
gold_preproc = false
max_length = 0
limit = 0
augmenter = null
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
gold_preproc = false
max_length = 0
limit = 0
augmenter = null
[training]
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
accumulate_gradient = 1
patience = 1600
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components = []
annotating_components = []
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
before_to_disk = null
before_update = null
[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2
get_length = null
[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001
t = 0.0
[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001
learn_rate = 0.001
[training.score_weights]
sents_f = 0.0
sents_p = null
sents_r = null
tag_acc = 0.2
pos_acc = 0.1
morph_acc = 0.1
morph_per_feat = null
lemma_acc = 0.2
dep_uas = 0.1
dep_las = 0.1
dep_las_per_type = null
ents_f = 0.2
ents_p = 0.0
ents_r = 0.0
ents_per_type = null
[pretraining]
[initialize]
vectors = ${paths.parser_model}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.tokenizer] |