File size: 4,566 Bytes
8c9e4ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
license: cc-by-4.0
base_model: deepset/bert-base-cased-squad2
tags:
- generated_from_trainer
model-index:
- name: bert-12
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-12

This model is a fine-tuned version of [deepset/bert-base-cased-squad2](https://huggingface.co/deepset/bert-base-cased-squad2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.4923

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 10.7735       | 0.05  | 5    | 11.9148         |
| 10.2311       | 0.09  | 10   | 11.2495         |
| 9.7299        | 0.14  | 15   | 10.3860         |
| 9.6068        | 0.18  | 20   | 9.5703          |
| 8.4179        | 0.23  | 25   | 8.8146          |
| 7.4033        | 0.28  | 30   | 8.1396          |
| 6.9589        | 0.32  | 35   | 7.5510          |
| 6.7006        | 0.37  | 40   | 7.0590          |
| 6.4072        | 0.41  | 45   | 6.6821          |
| 5.9393        | 0.46  | 50   | 6.4175          |
| 5.9838        | 0.5   | 55   | 6.2292          |
| 5.7825        | 0.55  | 60   | 6.1019          |
| 5.4686        | 0.6   | 65   | 6.0218          |
| 5.4427        | 0.64  | 70   | 5.9665          |
| 5.3708        | 0.69  | 75   | 5.9212          |
| 5.5801        | 0.73  | 80   | 5.8795          |
| 5.3894        | 0.78  | 85   | 5.8378          |
| 5.4065        | 0.83  | 90   | 5.7994          |
| 5.2206        | 0.87  | 95   | 5.7603          |
| 5.2044        | 0.92  | 100  | 5.7286          |
| 5.1113        | 0.96  | 105  | 5.7037          |
| 5.0342        | 1.01  | 110  | 5.6786          |
| 4.8333        | 1.06  | 115  | 5.6551          |
| 5.0003        | 1.1   | 120  | 5.6361          |
| 4.7931        | 1.15  | 125  | 5.6200          |
| 4.8148        | 1.19  | 130  | 5.6066          |
| 4.9347        | 1.24  | 135  | 5.5940          |
| 5.0362        | 1.28  | 140  | 5.5797          |
| 4.8616        | 1.33  | 145  | 5.5692          |
| 4.3509        | 1.38  | 150  | 5.5624          |
| 4.6121        | 1.42  | 155  | 5.5595          |
| 4.3364        | 1.47  | 160  | 5.5624          |
| 4.5721        | 1.51  | 165  | 5.5667          |
| 4.4084        | 1.56  | 170  | 5.5684          |
| 4.3097        | 1.61  | 175  | 5.5703          |
| 4.3166        | 1.65  | 180  | 5.5751          |
| 4.257         | 1.7   | 185  | 5.5807          |
| 3.9935        | 1.74  | 190  | 5.5841          |
| 4.1078        | 1.79  | 195  | 5.5872          |
| 4.2609        | 1.83  | 200  | 5.5840          |
| 4.4875        | 1.88  | 205  | 5.5797          |
| 4.1496        | 1.93  | 210  | 5.5747          |
| 4.333         | 1.97  | 215  | 5.5652          |
| 3.9003        | 2.02  | 220  | 5.5594          |
| 3.838         | 2.06  | 225  | 5.5551          |
| 3.8715        | 2.11  | 230  | 5.5525          |
| 4.1982        | 2.16  | 235  | 5.5462          |
| 3.9447        | 2.2   | 240  | 5.5395          |
| 3.8479        | 2.25  | 245  | 5.5352          |
| 3.9253        | 2.29  | 250  | 5.5338          |
| 4.0716        | 2.34  | 255  | 5.5316          |
| 4.0531        | 2.39  | 260  | 5.5295          |
| 4.1593        | 2.43  | 265  | 5.5262          |
| 3.8605        | 2.48  | 270  | 5.5230          |
| 4.1406        | 2.52  | 275  | 5.5170          |
| 4.1568        | 2.57  | 280  | 5.5105          |
| 3.5203        | 2.61  | 285  | 5.5061          |
| 3.8279        | 2.66  | 290  | 5.5042          |
| 4.3043        | 2.71  | 295  | 5.5008          |
| 3.9359        | 2.75  | 300  | 5.4978          |
| 3.6847        | 2.8   | 305  | 5.4954          |
| 3.5765        | 2.84  | 310  | 5.4940          |
| 4.035         | 2.89  | 315  | 5.4927          |
| 3.4865        | 2.94  | 320  | 5.4924          |
| 3.7252        | 2.98  | 325  | 5.4923          |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1