hugorosen commited on
Commit
4d9f694
·
1 Parent(s): 5e5c963

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -12
README.md CHANGED
@@ -5,6 +5,7 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
8
  ---
9
 
10
  # hugorosen/flaubert_base_uncased-xnli-sts
@@ -25,7 +26,7 @@ Then you can use the model like this:
25
 
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
  model = SentenceTransformer('hugorosen/flaubert_base_uncased-xnli-sts')
31
  embeddings = model.encode(sentences)
@@ -50,7 +51,7 @@ def mean_pooling(model_output, attention_mask):
50
 
51
 
52
  # Sentences we want sentence embeddings for
53
- sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
  tokenizer = AutoTokenizer.from_pretrained('hugorosen/flaubert_base_uncased-xnli-sts')
@@ -76,22 +77,17 @@ print(sentence_embeddings)
76
 
77
  <!--- Describe how your model was evaluated -->
78
 
79
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=hugorosen/flaubert_base_uncased-xnli-sts)
80
 
81
 
82
  ## Training
83
- The model was trained with the parameters:
84
 
85
- **DataLoader**:
86
 
87
- `torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
88
- ```
89
- {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
90
- ```
91
-
92
- **Loss**:
93
 
94
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
95
 
96
  Parameters of the fit()-Method:
97
  ```
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ - fr
9
  ---
10
 
11
  # hugorosen/flaubert_base_uncased-xnli-sts
 
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
+ sentences = ["Ceci est une phrase d'exemple", "Chaque phrase est convertie"]
30
 
31
  model = SentenceTransformer('hugorosen/flaubert_base_uncased-xnli-sts')
32
  embeddings = model.encode(sentences)
 
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
+ sentences = ["Ceci est une phrase d'exemple", "Chaque phrase est convertie"]
55
 
56
  # Load model from HuggingFace Hub
57
  tokenizer = AutoTokenizer.from_pretrained('hugorosen/flaubert_base_uncased-xnli-sts')
 
77
 
78
  <!--- Describe how your model was evaluated -->
79
 
80
+ This model scores 76.9% on STS test (french)
81
 
82
 
83
  ## Training
84
+ ### Pre-training
85
 
86
+ We use the pre-trained [flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_cased). Please refer to the model card for more detailed information about the pre-training procedure.
87
 
88
+ ### Fine-tuning
 
 
 
 
 
89
 
90
+ we fine-tune the model using a `CosineSimilarityLoss` on XNLI and STS dataset (french).
91
 
92
  Parameters of the fit()-Method:
93
  ```