publish first trained ppo-lunarlander-v2
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo_lunar.zip +3 -0
- ppo_lunar/_stable_baselines3_version +1 -0
- ppo_lunar/data +94 -0
- ppo_lunar/policy.optimizer.pth +3 -0
- ppo_lunar/policy.pth +3 -0
- ppo_lunar/pytorch_variables.pth +3 -0
- ppo_lunar/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 248.25 +/- 18.55
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2973cb7830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2973cb78c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2973cb7950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2973cb79e0>", "_build": "<function ActorCriticPolicy._build at 0x7f2973cb7a70>", "forward": "<function ActorCriticPolicy.forward at 0x7f2973cb7b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2973cb7b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2973cb7c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2973cb7cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2973cb7d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2973cb7dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2973d03930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651765779.1579974, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANO8sj78tJ8+/cjhvb5SqL4uiZA9qImZvAAAAAAAAAAA+gBaPuSiDb3y0vI7bk6cupNkdL4m52q7AACAPwAAgD/aVl0+aDuVvLNaHztll1S5eXcCvkDRRLoAAIA/AACAP9M4aT7sxpE+ehA/vnmNlr5obe27A9KZuwAAAAAAAAAAwAoovs+YT7y19c67k1Mwunh4sz1qGRA7AACAPwAAgD9OnJ++cQOBPpNgaT7VA1++tNfmvP/BCT0AAAAAAAAAALPHlL1cTx24xlUauO1AG7N7LaY6NiA0NwAAAAAAAIA/uqRoPsnsNz2Ox7o6hcRPOdPt1z7e7184AACAPwAAgD/6zz4+YXm1vCsfEbx8IOg6Gworvm0fmjwAAAAAAAAAAJqJmTtUD7Q/TvzyPjZDP74wsLG7yCjcvQAAAAAAAAAAWpOwvY8CYroHw8C38IGDsw5RNDvKjdw2AACAPwAAgD9mO/A9UfvjPW45Jb0dAnC+IPUVPOs0Yb0AAAAAAAAAABoaYj6DViK8OL8GO01Pvrj6coO9orwgugAAgD8AAIA/Wii2vR9+uLs26FI9os63vSUnzDwxVq8+AACAPwAAgD/mq3c++NnMPBoYBL4FvBO+Apy7PHPoZb0AAAAAAAAAAOYRLT1QBoQ/Tp2/PS3AFr/+00A9kqGBPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUwPN51zIcECUhpRSlIwBbJRL2IwBdJRHQJp0r6InBtV1fZQoaAZoCWgPQwiG5c+3hQ1xQJSGlFKUaBVNFwFoFkdAmnVf5P/JeXV9lChoBmgJaA9DCHIZNzVQw29AlIaUUpRoFUvUaBZHQJp22nCO3lV1fZQoaAZoCWgPQwhvhEVFHEFyQJSGlFKUaBVNEgFoFkdAmncAPmPo3nV9lChoBmgJaA9DCOfj2lCx7mFAlIaUUpRoFU3oA2gWR0Cad3biqABldX2UKGgGaAloD0MIwD3Pn3ZucECUhpRSlGgVS+poFkdAmneSgTRIBnV9lChoBmgJaA9DCGu5MxOM729AlIaUUpRoFU0XAWgWR0CaeG7+1jRVdX2UKGgGaAloD0MInDOitDcMOECUhpRSlGgVS8toFkdAmnlQuyu6mXV9lChoBmgJaA9DCLoUV5X9F29AlIaUUpRoFUvVaBZHQJp6hTZQHiZ1fZQoaAZoCWgPQwizQLtDSkRwQJSGlFKUaBVL4mgWR0Caeu3Lmp2mdX2UKGgGaAloD0MILq7xmeybcECUhpRSlGgVS/VoFkdAmnuHnhbW3HV9lChoBmgJaA9DCD3vxoKCEHJAlIaUUpRoFU0MAWgWR0Cae8BcAzYVdX2UKGgGaAloD0MIb/CFydT1cUCUhpRSlGgVTWYBaBZHQJp+CQJXyRV1fZQoaAZoCWgPQwgDWyVYnHtwQJSGlFKUaBVL/GgWR0Caf18E3bVSdX2UKGgGaAloD0MIGCe+2tHRcECUhpRSlGgVS9xoFkdAmoDPYe1a4nV9lChoBmgJaA9DCKG9+nho6GxAlIaUUpRoFUvbaBZHQJqCYEIPbwl1fZQoaAZoCWgPQwic+GpHcRNxQJSGlFKUaBVNYgFoFkdAmoKVrIo3JnV9lChoBmgJaA9DCAA7N23GQTNAlIaUUpRoFUu+aBZHQJqCxM495hV1fZQoaAZoCWgPQwh/wW7YtlpuQJSGlFKUaBVL3WgWR0Cag6PAfuCxdX2UKGgGaAloD0MIf4RhwJLEXUCUhpRSlGgVTegDaBZHQJqEreuV5bB1fZQoaAZoCWgPQwg0g/jAjsVvQJSGlFKUaBVL4mgWR0CaiA/NZ/0/dX2UKGgGaAloD0MIzsXf9sT3cECUhpRSlGgVS+BoFkdAmuheuFHrhXV9lChoBmgJaA9DCHLBGfy9u3FAlIaUUpRoFU03AWgWR0Ca6OdwvQF+dX2UKGgGaAloD0MIs3kcBvPKb0CUhpRSlGgVS+1oFkdAmurGhIvrW3V9lChoBmgJaA9DCBVvZB757z5AlIaUUpRoFUvLaBZHQJrrvva11GN1fZQoaAZoCWgPQwiwHYzYJ1NxQJSGlFKUaBVNDgFoFkdAmuv4ecQRPHV9lChoBmgJaA9DCGGOHr+3omJAlIaUUpRoFU3oA2gWR0Ca7niBGx2TdX2UKGgGaAloD0MIT1yOV6BKbUCUhpRSlGgVS/NoFkdAmvElC5VfeHV9lChoBmgJaA9DCJHQlnMpI25AlIaUUpRoFUvnaBZHQJryv0pVjqh1fZQoaAZoCWgPQwgYtJCAUbNvQJSGlFKUaBVL1WgWR0Ca8+lu3trsdX2UKGgGaAloD0MIrTQpBR0AckCUhpRSlGgVTUYBaBZHQJr2glF+d9V1fZQoaAZoCWgPQwhfl+E/3XBcQJSGlFKUaBVN6ANoFkdAmvdVfu1F6XV9lChoBmgJaA9DCBjS4SEM4HBAlIaUUpRoFU0VAWgWR0Ca+BqZML4OdX2UKGgGaAloD0MIgjrl0Q3vcUCUhpRSlGgVTR4BaBZHQJr4SJk5IYp1fZQoaAZoCWgPQwhlHY6uUuZuQJSGlFKUaBVNLQJoFkdAmvjp1aGHpXV9lChoBmgJaA9DCFp+4CrPf2BAlIaUUpRoFU3oA2gWR0Ca+TCa7VawdX2UKGgGaAloD0MI/vDz34NuYUCUhpRSlGgVTegDaBZHQJr6JLTQVsV1fZQoaAZoCWgPQwgknYGRF65kQJSGlFKUaBVN6ANoFkdAmvwwHJLdvnV9lChoBmgJaA9DCFqAttWsfVpAlIaUUpRoFU3oA2gWR0Ca/O2mHgxbdX2UKGgGaAloD0MI9kIB28HFb0CUhpRSlGgVS/NoFkdAmv2yFPBSDXV9lChoBmgJaA9DCOdVndWCZmJAlIaUUpRoFU3oA2gWR0Ca/gar3j+8dX2UKGgGaAloD0MIkE/IztthcECUhpRSlGgVS+doFkdAmv8r2g398HV9lChoBmgJaA9DCHKjyFpDZ29AlIaUUpRoFUvZaBZHQJr/SxGDtgN1fZQoaAZoCWgPQwiHwfwVsuxuQJSGlFKUaBVL4WgWR0CbABbjLjgidX2UKGgGaAloD0MI6GZ/oNx2YUCUhpRSlGgVTegDaBZHQJsAw3Mpw0h1fZQoaAZoCWgPQwipg7wezAlxQJSGlFKUaBVL6GgWR0CbAeMlkYoBdX2UKGgGaAloD0MI+DWSBGEYbkCUhpRSlGgVS/RoFkdAmwQNHQQcxXV9lChoBmgJaA9DCAmJtI3/oXBAlIaUUpRoFUvsaBZHQJsEgCEHt4R1fZQoaAZoCWgPQwhxVkRNNARwQJSGlFKUaBVL3WgWR0CbBMLThHbzdX2UKGgGaAloD0MIf95UpMLvcECUhpRSlGgVS+5oFkdAmwbyMHbAUXV9lChoBmgJaA9DCIl6waf5EXFAlIaUUpRoFUvtaBZHQJsHD7aZhKF1fZQoaAZoCWgPQwgZ48PsZWtyQJSGlFKUaBVL9WgWR0CbCF1fmcOLdX2UKGgGaAloD0MI+yDLggm2ZECUhpRSlGgVTegDaBZHQJsI93zMA3l1fZQoaAZoCWgPQwhj8DDtW45xQJSGlFKUaBVNKgFoFkdAmwsGmtQsPXV9lChoBmgJaA9DCLwkzopolHFAlIaUUpRoFU0IAWgWR0CbCy5Pdl/ZdX2UKGgGaAloD0MIHhhA+FCxcECUhpRSlGgVS9doFkdAmwyAdXDFZXV9lChoBmgJaA9DCIOHad/cPXBAlIaUUpRoFU04A2gWR0CbDTYKpkwwdX2UKGgGaAloD0MIARWOINWXckCUhpRSlGgVTSYBaBZHQJsOk5Qxesx1fZQoaAZoCWgPQwivCWmNQdJuQJSGlFKUaBVL12gWR0CbEH8KXv6TdX2UKGgGaAloD0MI6+HLRBGbckCUhpRSlGgVTRUBaBZHQJsQxbVz6rN1fZQoaAZoCWgPQwibIVUU72ZxQJSGlFKUaBVNFAFoFkdAmxIOpn6EanV9lChoBmgJaA9DCHMqGQDqp3BAlIaUUpRoFU04AWgWR0CbEiAqNIbwdX2UKGgGaAloD0MIAcCxZ885cECUhpRSlGgVTX0DaBZHQJsTHf1pTMt1fZQoaAZoCWgPQwjmH32TpnNyQJSGlFKUaBVL+mgWR0CbE9Rv3rUtdX2UKGgGaAloD0MInG7ZIT4pcUCUhpRSlGgVS/hoFkdAmxPoBq9GqnV9lChoBmgJaA9DCIsyG2SSo2FAlIaUUpRoFU3oA2gWR0CbFaPHktEodX2UKGgGaAloD0MIon2s4LdMbUCUhpRSlGgVTQoBaBZHQJsV6P7vXsh1fZQoaAZoCWgPQwi1U3O5AVlwQJSGlFKUaBVNHQFoFkdAmxjq2a2F4HV9lChoBmgJaA9DCJXVdD3RYHBAlIaUUpRoFU1YAWgWR0CbGcHi3ocJdX2UKGgGaAloD0MIVkj5SbVbb0CUhpRSlGgVS/FoFkdAmxtO+M6zV3V9lChoBmgJaA9DCBJqhlRRxGFAlIaUUpRoFU3oA2gWR0CbG/MSbpeNdX2UKGgGaAloD0MIwMsMG2Wub0CUhpRSlGgVS+doFkdAmxwJjlPrOnV9lChoBmgJaA9DCD5cctwp5XFAlIaUUpRoFU00AWgWR0CbHDKekHlfdX2UKGgGaAloD0MIrDsW26THX0CUhpRSlGgVTegDaBZHQJsciq+8Gs51fZQoaAZoCWgPQwg6evzephhmQJSGlFKUaBVN6ANoFkdAmxzGDxsl9nV9lChoBmgJaA9DCPG3PUHih3FAlIaUUpRoFU0BAWgWR0CbHZ9hJAdGdX2UKGgGaAloD0MIRWRYxRvccECUhpRSlGgVTSMBaBZHQJsepA3T/hl1fZQoaAZoCWgPQwiLic3HtXFxQJSGlFKUaBVNlwFoFkdAmx+1ZTyau3V9lChoBmgJaA9DCNqM0xBVJXJAlIaUUpRoFU0QAWgWR0CbH78jzI3jdX2UKGgGaAloD0MIc2iR7XxpYUCUhpRSlGgVTegDaBZHQJshMrUb1h91fZQoaAZoCWgPQwj0p43qdGg9QJSGlFKUaBVL02gWR0CbI0ZoPCl8dX2UKGgGaAloD0MI/u2yX/d5bUCUhpRSlGgVS+loFkdAmyN1FhG6PXV9lChoBmgJaA9DCGQfZFmwzm5AlIaUUpRoFU0HAWgWR0CbJYoiLVFydX2UKGgGaAloD0MIo8wGmWSjbkCUhpRSlGgVS/ZoFkdAmyawY51eSnV9lChoBmgJaA9DCIApAwe0WnJAlIaUUpRoFU0cAWgWR0CbJuG1hLGrdX2UKGgGaAloD0MIoWZIFcW3cECUhpRSlGgVS91oFkdAmycGWyC4BnV9lChoBmgJaA9DCLHc0mrIYm9AlIaUUpRoFUvhaBZHQJsobmYBvJl1fZQoaAZoCWgPQwjW5ZSAGOBtQJSGlFKUaBVNPgFoFkdAmyiNlum78XV9lChoBmgJaA9DCMWScve5mWBAlIaUUpRoFU3oA2gWR0CbKVebd8ArdX2UKGgGaAloD0MI4Q1pVOBJcECUhpRSlGgVS/FoFkdAmyrDy8SPEXV9lChoBmgJaA9DCHaIf9jSYW1AlIaUUpRoFU2fAWgWR0CbK3gvUSZjdX2UKGgGaAloD0MIFt9Q+GxDcUCUhpRSlGgVS9doFkdAmyvxe9i+c3V9lChoBmgJaA9DCP/sR4oIb3FAlIaUUpRoFU0GAWgWR0CbLe+HJtBOdX2UKGgGaAloD0MIgnFw6dgZcECUhpRSlGgVS9doFkdAmy+Cpm29c3V9lChoBmgJaA9DCKp9Oh5z1HBAlIaUUpRoFUvfaBZHQJsvu+ajN6h1fZQoaAZoCWgPQwjGpwAYT4ZvQJSGlFKUaBVL7mgWR0CbMC3fQ8fWdX2UKGgGaAloD0MInYU97TBUcUCUhpRSlGgVTRABaBZHQJswcqtozvZ1fZQoaAZoCWgPQwisi9toAE9vQJSGlFKUaBVL5WgWR0CbMWwevIOpdX2UKGgGaAloD0MIGvz9YrYlbkCUhpRSlGgVS/1oFkdAmzTw5R0lq3V9lChoBmgJaA9DCCwoDMo0229AlIaUUpRoFUv5aBZHQJs2JKSPluF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo_lunar.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd764f34622903d6c53ae1f1a2c435116808839162dd068bccbbe90bf3e86962
|
3 |
+
size 144049
|
ppo_lunar/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo_lunar/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2973cb7830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2973cb78c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2973cb7950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2973cb79e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2973cb7a70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2973cb7b00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2973cb7b90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2973cb7c20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2973cb7cb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2973cb7d40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2973cb7dd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2973d03930>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651765779.1579974,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANO8sj78tJ8+/cjhvb5SqL4uiZA9qImZvAAAAAAAAAAA+gBaPuSiDb3y0vI7bk6cupNkdL4m52q7AACAPwAAgD/aVl0+aDuVvLNaHztll1S5eXcCvkDRRLoAAIA/AACAP9M4aT7sxpE+ehA/vnmNlr5obe27A9KZuwAAAAAAAAAAwAoovs+YT7y19c67k1Mwunh4sz1qGRA7AACAPwAAgD9OnJ++cQOBPpNgaT7VA1++tNfmvP/BCT0AAAAAAAAAALPHlL1cTx24xlUauO1AG7N7LaY6NiA0NwAAAAAAAIA/uqRoPsnsNz2Ox7o6hcRPOdPt1z7e7184AACAPwAAgD/6zz4+YXm1vCsfEbx8IOg6Gworvm0fmjwAAAAAAAAAAJqJmTtUD7Q/TvzyPjZDP74wsLG7yCjcvQAAAAAAAAAAWpOwvY8CYroHw8C38IGDsw5RNDvKjdw2AACAPwAAgD9mO/A9UfvjPW45Jb0dAnC+IPUVPOs0Yb0AAAAAAAAAABoaYj6DViK8OL8GO01Pvrj6coO9orwgugAAgD8AAIA/Wii2vR9+uLs26FI9os63vSUnzDwxVq8+AACAPwAAgD/mq3c++NnMPBoYBL4FvBO+Apy7PHPoZb0AAAAAAAAAAOYRLT1QBoQ/Tp2/PS3AFr/+00A9kqGBPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVUBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUwPN51zIcECUhpRSlIwBbJRL2IwBdJRHQJp0r6InBtV1fZQoaAZoCWgPQwiG5c+3hQ1xQJSGlFKUaBVNFwFoFkdAmnVf5P/JeXV9lChoBmgJaA9DCHIZNzVQw29AlIaUUpRoFUvUaBZHQJp22nCO3lV1fZQoaAZoCWgPQwhvhEVFHEFyQJSGlFKUaBVNEgFoFkdAmncAPmPo3nV9lChoBmgJaA9DCOfj2lCx7mFAlIaUUpRoFU3oA2gWR0Cad3biqABldX2UKGgGaAloD0MIwD3Pn3ZucECUhpRSlGgVS+poFkdAmneSgTRIBnV9lChoBmgJaA9DCGu5MxOM729AlIaUUpRoFU0XAWgWR0CaeG7+1jRVdX2UKGgGaAloD0MInDOitDcMOECUhpRSlGgVS8toFkdAmnlQuyu6mXV9lChoBmgJaA9DCLoUV5X9F29AlIaUUpRoFUvVaBZHQJp6hTZQHiZ1fZQoaAZoCWgPQwizQLtDSkRwQJSGlFKUaBVL4mgWR0Caeu3Lmp2mdX2UKGgGaAloD0MILq7xmeybcECUhpRSlGgVS/VoFkdAmnuHnhbW3HV9lChoBmgJaA9DCD3vxoKCEHJAlIaUUpRoFU0MAWgWR0Cae8BcAzYVdX2UKGgGaAloD0MIb/CFydT1cUCUhpRSlGgVTWYBaBZHQJp+CQJXyRV1fZQoaAZoCWgPQwgDWyVYnHtwQJSGlFKUaBVL/GgWR0Caf18E3bVSdX2UKGgGaAloD0MIGCe+2tHRcECUhpRSlGgVS9xoFkdAmoDPYe1a4nV9lChoBmgJaA9DCKG9+nho6GxAlIaUUpRoFUvbaBZHQJqCYEIPbwl1fZQoaAZoCWgPQwic+GpHcRNxQJSGlFKUaBVNYgFoFkdAmoKVrIo3JnV9lChoBmgJaA9DCAA7N23GQTNAlIaUUpRoFUu+aBZHQJqCxM495hV1fZQoaAZoCWgPQwh/wW7YtlpuQJSGlFKUaBVL3WgWR0Cag6PAfuCxdX2UKGgGaAloD0MIf4RhwJLEXUCUhpRSlGgVTegDaBZHQJqEreuV5bB1fZQoaAZoCWgPQwg0g/jAjsVvQJSGlFKUaBVL4mgWR0CaiA/NZ/0/dX2UKGgGaAloD0MIzsXf9sT3cECUhpRSlGgVS+BoFkdAmuheuFHrhXV9lChoBmgJaA9DCHLBGfy9u3FAlIaUUpRoFU03AWgWR0Ca6OdwvQF+dX2UKGgGaAloD0MIs3kcBvPKb0CUhpRSlGgVS+1oFkdAmurGhIvrW3V9lChoBmgJaA9DCBVvZB757z5AlIaUUpRoFUvLaBZHQJrrvva11GN1fZQoaAZoCWgPQwiwHYzYJ1NxQJSGlFKUaBVNDgFoFkdAmuv4ecQRPHV9lChoBmgJaA9DCGGOHr+3omJAlIaUUpRoFU3oA2gWR0Ca7niBGx2TdX2UKGgGaAloD0MIT1yOV6BKbUCUhpRSlGgVS/NoFkdAmvElC5VfeHV9lChoBmgJaA9DCJHQlnMpI25AlIaUUpRoFUvnaBZHQJryv0pVjqh1fZQoaAZoCWgPQwgYtJCAUbNvQJSGlFKUaBVL1WgWR0Ca8+lu3trsdX2UKGgGaAloD0MIrTQpBR0AckCUhpRSlGgVTUYBaBZHQJr2glF+d9V1fZQoaAZoCWgPQwhfl+E/3XBcQJSGlFKUaBVN6ANoFkdAmvdVfu1F6XV9lChoBmgJaA9DCBjS4SEM4HBAlIaUUpRoFU0VAWgWR0Ca+BqZML4OdX2UKGgGaAloD0MIgjrl0Q3vcUCUhpRSlGgVTR4BaBZHQJr4SJk5IYp1fZQoaAZoCWgPQwhlHY6uUuZuQJSGlFKUaBVNLQJoFkdAmvjp1aGHpXV9lChoBmgJaA9DCFp+4CrPf2BAlIaUUpRoFU3oA2gWR0Ca+TCa7VawdX2UKGgGaAloD0MI/vDz34NuYUCUhpRSlGgVTegDaBZHQJr6JLTQVsV1fZQoaAZoCWgPQwgknYGRF65kQJSGlFKUaBVN6ANoFkdAmvwwHJLdvnV9lChoBmgJaA9DCFqAttWsfVpAlIaUUpRoFU3oA2gWR0Ca/O2mHgxbdX2UKGgGaAloD0MI9kIB28HFb0CUhpRSlGgVS/NoFkdAmv2yFPBSDXV9lChoBmgJaA9DCOdVndWCZmJAlIaUUpRoFU3oA2gWR0Ca/gar3j+8dX2UKGgGaAloD0MIkE/IztthcECUhpRSlGgVS+doFkdAmv8r2g398HV9lChoBmgJaA9DCHKjyFpDZ29AlIaUUpRoFUvZaBZHQJr/SxGDtgN1fZQoaAZoCWgPQwiHwfwVsuxuQJSGlFKUaBVL4WgWR0CbABbjLjgidX2UKGgGaAloD0MI6GZ/oNx2YUCUhpRSlGgVTegDaBZHQJsAw3Mpw0h1fZQoaAZoCWgPQwipg7wezAlxQJSGlFKUaBVL6GgWR0CbAeMlkYoBdX2UKGgGaAloD0MI+DWSBGEYbkCUhpRSlGgVS/RoFkdAmwQNHQQcxXV9lChoBmgJaA9DCAmJtI3/oXBAlIaUUpRoFUvsaBZHQJsEgCEHt4R1fZQoaAZoCWgPQwhxVkRNNARwQJSGlFKUaBVL3WgWR0CbBMLThHbzdX2UKGgGaAloD0MIf95UpMLvcECUhpRSlGgVS+5oFkdAmwbyMHbAUXV9lChoBmgJaA9DCIl6waf5EXFAlIaUUpRoFUvtaBZHQJsHD7aZhKF1fZQoaAZoCWgPQwgZ48PsZWtyQJSGlFKUaBVL9WgWR0CbCF1fmcOLdX2UKGgGaAloD0MI+yDLggm2ZECUhpRSlGgVTegDaBZHQJsI93zMA3l1fZQoaAZoCWgPQwhj8DDtW45xQJSGlFKUaBVNKgFoFkdAmwsGmtQsPXV9lChoBmgJaA9DCLwkzopolHFAlIaUUpRoFU0IAWgWR0CbCy5Pdl/ZdX2UKGgGaAloD0MIHhhA+FCxcECUhpRSlGgVS9doFkdAmwyAdXDFZXV9lChoBmgJaA9DCIOHad/cPXBAlIaUUpRoFU04A2gWR0CbDTYKpkwwdX2UKGgGaAloD0MIARWOINWXckCUhpRSlGgVTSYBaBZHQJsOk5Qxesx1fZQoaAZoCWgPQwivCWmNQdJuQJSGlFKUaBVL12gWR0CbEH8KXv6TdX2UKGgGaAloD0MI6+HLRBGbckCUhpRSlGgVTRUBaBZHQJsQxbVz6rN1fZQoaAZoCWgPQwibIVUU72ZxQJSGlFKUaBVNFAFoFkdAmxIOpn6EanV9lChoBmgJaA9DCHMqGQDqp3BAlIaUUpRoFU04AWgWR0CbEiAqNIbwdX2UKGgGaAloD0MIAcCxZ885cECUhpRSlGgVTX0DaBZHQJsTHf1pTMt1fZQoaAZoCWgPQwjmH32TpnNyQJSGlFKUaBVL+mgWR0CbE9Rv3rUtdX2UKGgGaAloD0MInG7ZIT4pcUCUhpRSlGgVS/hoFkdAmxPoBq9GqnV9lChoBmgJaA9DCIsyG2SSo2FAlIaUUpRoFU3oA2gWR0CbFaPHktEodX2UKGgGaAloD0MIon2s4LdMbUCUhpRSlGgVTQoBaBZHQJsV6P7vXsh1fZQoaAZoCWgPQwi1U3O5AVlwQJSGlFKUaBVNHQFoFkdAmxjq2a2F4HV9lChoBmgJaA9DCJXVdD3RYHBAlIaUUpRoFU1YAWgWR0CbGcHi3ocJdX2UKGgGaAloD0MIVkj5SbVbb0CUhpRSlGgVS/FoFkdAmxtO+M6zV3V9lChoBmgJaA9DCBJqhlRRxGFAlIaUUpRoFU3oA2gWR0CbG/MSbpeNdX2UKGgGaAloD0MIwMsMG2Wub0CUhpRSlGgVS+doFkdAmxwJjlPrOnV9lChoBmgJaA9DCD5cctwp5XFAlIaUUpRoFU00AWgWR0CbHDKekHlfdX2UKGgGaAloD0MIrDsW26THX0CUhpRSlGgVTegDaBZHQJsciq+8Gs51fZQoaAZoCWgPQwg6evzephhmQJSGlFKUaBVN6ANoFkdAmxzGDxsl9nV9lChoBmgJaA9DCPG3PUHih3FAlIaUUpRoFU0BAWgWR0CbHZ9hJAdGdX2UKGgGaAloD0MIRWRYxRvccECUhpRSlGgVTSMBaBZHQJsepA3T/hl1fZQoaAZoCWgPQwiLic3HtXFxQJSGlFKUaBVNlwFoFkdAmx+1ZTyau3V9lChoBmgJaA9DCNqM0xBVJXJAlIaUUpRoFU0QAWgWR0CbH78jzI3jdX2UKGgGaAloD0MIc2iR7XxpYUCUhpRSlGgVTegDaBZHQJshMrUb1h91fZQoaAZoCWgPQwj0p43qdGg9QJSGlFKUaBVL02gWR0CbI0ZoPCl8dX2UKGgGaAloD0MI/u2yX/d5bUCUhpRSlGgVS+loFkdAmyN1FhG6PXV9lChoBmgJaA9DCGQfZFmwzm5AlIaUUpRoFU0HAWgWR0CbJYoiLVFydX2UKGgGaAloD0MIo8wGmWSjbkCUhpRSlGgVS/ZoFkdAmyawY51eSnV9lChoBmgJaA9DCIApAwe0WnJAlIaUUpRoFU0cAWgWR0CbJuG1hLGrdX2UKGgGaAloD0MIoWZIFcW3cECUhpRSlGgVS91oFkdAmycGWyC4BnV9lChoBmgJaA9DCLHc0mrIYm9AlIaUUpRoFUvhaBZHQJsobmYBvJl1fZQoaAZoCWgPQwjW5ZSAGOBtQJSGlFKUaBVNPgFoFkdAmyiNlum78XV9lChoBmgJaA9DCMWScve5mWBAlIaUUpRoFU3oA2gWR0CbKVebd8ArdX2UKGgGaAloD0MI4Q1pVOBJcECUhpRSlGgVS/FoFkdAmyrDy8SPEXV9lChoBmgJaA9DCHaIf9jSYW1AlIaUUpRoFU2fAWgWR0CbK3gvUSZjdX2UKGgGaAloD0MIFt9Q+GxDcUCUhpRSlGgVS9doFkdAmyvxe9i+c3V9lChoBmgJaA9DCP/sR4oIb3FAlIaUUpRoFU0GAWgWR0CbLe+HJtBOdX2UKGgGaAloD0MIgnFw6dgZcECUhpRSlGgVS9doFkdAmy+Cpm29c3V9lChoBmgJaA9DCKp9Oh5z1HBAlIaUUpRoFUvfaBZHQJsvu+ajN6h1fZQoaAZoCWgPQwjGpwAYT4ZvQJSGlFKUaBVL7mgWR0CbMC3fQ8fWdX2UKGgGaAloD0MInYU97TBUcUCUhpRSlGgVTRABaBZHQJswcqtozvZ1fZQoaAZoCWgPQwisi9toAE9vQJSGlFKUaBVL5WgWR0CbMWwevIOpdX2UKGgGaAloD0MIGvz9YrYlbkCUhpRSlGgVS/1oFkdAmzTw5R0lq3V9lChoBmgJaA9DCCwoDMo0229AlIaUUpRoFUv5aBZHQJs2JKSPluF1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo_lunar/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e531fd402b8ce2370f998996e42ddd59da36a208f525e8ad8e7d7a3fdb11100
|
3 |
+
size 84893
|
ppo_lunar/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a49a6be258736721e94a23e814d6f17325d374a3dc0163546d71fb6970e5f0d6
|
3 |
+
size 43201
|
ppo_lunar/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunar/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b6be6a92727c3f3fdc18307a36effe4946606b9800513f1c66f2de0325fc69d
|
3 |
+
size 201525
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 248.25193386841914, "std_reward": 18.552074745318823, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T16:30:08.573066"}
|