File size: 5,550 Bytes
88a6bd6
71a1483
88a6bd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464de34
88a6bd6
 
 
 
 
 
 
 
f71788f
88a6bd6
f71788f
88a6bd6
 
f71788f
88a6bd6
 
 
 
 
 
 
 
 
f71788f
 
 
 
 
 
 
 
88a6bd6
 
 
 
4266f7f
 
 
 
 
 
 
88a6bd6
4266f7f
feba175
88a6bd6
 
 
 
f71788f
88a6bd6
 
f71788f
88a6bd6
 
 
 
 
 
48c86d4
88a6bd6
 
 
f71788f
 
 
 
 
 
 
 
88a6bd6
 
 
 
4266f7f
 
 
 
 
 
 
88a6bd6
4266f7f
feba175
88a6bd6
 
4266f7f
88a6bd6
 
 
 
 
 
 
 
9292676
88a6bd6
f71788f
88a6bd6
 
f71788f
88a6bd6
 
f71788f
88a6bd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71788f
88a6bd6
f71788f
88a6bd6
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
license: llama3.1
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
library_name: transformers
pipeline_tag: text-generation
tags:
- llama-3.1
- meta
- autoawq
---

> [!IMPORTANT]
> This repository is a community-driven quantized version of the original model [`meta-llama/Meta-Llama-3.1-8B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) which is the BF16 half-precision official version released by Meta AI.

## Model Information

The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.

This repository contains [`meta-llama/Meta-Llama-3.1-8B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) quantized using [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) from FP16 down to INT4 using the GEMM kernels performing zero-point quantization with a group size of 128.

## Model Usage

> [!NOTE]
> In order to run the inference with Llama 3.1 8B Instruct AWQ in INT4, around 4 GiB of VRAM are needed only for loading the model checkpoint, without including the KV cache or the CUDA graphs, meaning that there should be a bit over that VRAM available.

In order to use the current quantized model, support is offered for different solutions as `transformers`, `autoawq`, or `text-generation-inference`.

### 🤗 Transformers

In order to run the inference with Llama 3.1 8B Instruct AWQ in INT4, you need to install the following packages:

```bash
pip install -q --upgrade transformers autoawq accelerate
```

To run the inference on top of Llama 3.1 8B Instruct AWQ in INT4 precision, the AWQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
  model_id,
  torch_dtype=torch.float16,
  low_cpu_mem_usage=True,
  device_map="auto",
)

prompt = [
  {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
  {"role": "user", "content": "What's Deep Learning?"},
]
inputs = tokenizer.apply_chat_template(
  prompt,
  tokenize=True,
  add_generation_prompt=True,
  return_tensors="pt",
  return_dict=True,
).to("cuda")

outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
```

### AutoAWQ

In order to run the inference with Llama 3.1 8B Instruct AWQ in INT4, you need to install the following packages:

```bash
pip install -q --upgrade transformers autoawq accelerate
```

Alternatively, one may want to run that via `AutoAWQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above.

```python
import torch
from awq import AutoAWQForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoAWQForCausalLM.from_pretrained(
  model_id,
  torch_dtype=torch.float16,
  low_cpu_mem_usage=True,
  device_map="auto",
)

prompt = [
  {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
  {"role": "user", "content": "What's Deep Learning?"},
]
inputs = tokenizer.apply_chat_template(
  prompt,
  tokenize=True,
  add_generation_prompt=True,
  return_tensors="pt",
  return_dict=True,
).to("cuda")

outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
```

The AutoAWQ script has been adapted from [`AutoAWQ/examples/generate.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/generate.py).

### 🤗 Text Generation Inference (TGI)

Coming soon!

## Quantization Reproduction

> [!NOTE]
> In order to quantize Llama 3.1 8B Instruct using AutoAWQ, you will need to use an instance with at least enough CPU RAM to fit the whole model i.e. ~8GiB, and an NVIDIA GPU with 16GiB of VRAM to quantize it.

In order to quantize Llama 3.1 8B Instruct, first install the following packages:

```bash
pip install -q --upgrade transformers autoawq accelerate
```

Then run the following script, adapted from [`AutoAWQ/examples/quantize.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/quantize.py):

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_path = "meta-llama/Meta-Llama-3.1-8B-Instruct"
quant_path = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
quant_config = {
  "zero_point": True,
  "q_group_size": 128,
  "w_bit": 4,
  "version": "GEMM",
}

# Load model
model = AutoAWQForCausalLM.from_pretrained(
  model_path, low_cpu_mem_usage=True, use_cache=False,
)
tokenizer = AutoTokenizer.from_pretrained(model_path)

# Quantize
model.quantize(tokenizer, quant_config=quant_config)

# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)

print(f'Model is quantized and saved at "{quant_path}"')
```