File size: 6,446 Bytes
bdba3d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import math
from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss

from transformers.modeling_outputs import (
    SequenceClassifierOutput
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from transformers.models.whisper.configuration_whisper import WhisperConfig
from transformers.models.whisper.generation_whisper import WhisperGenerationMixin
from transformers.models.whisper.modeling_whisper import WhisperPreTrainedModel, WHISPER_ENCODER_INPUTS_DOCSTRING, _CONFIG_FOR_DOC, WhisperEncoder

class ViSpeechClassification(WhisperPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.encoder = WhisperEncoder(config)
        num_layers = config.num_hidden_layers + 1  # transformer layers + input embeddings
        self.projector = nn.Sequential(
            nn.Linear(self.encoder.config.hidden_size, 1024),
            nn.ReLU(),
            nn.Dropout(config.dropout),
            
            nn.Linear(1024, 512),
            nn.ReLU(),
            nn.Dropout(config.dropout),
            
            nn.Linear(512, config.classifier_proj_size),
            nn.ReLU(),
            nn.Dropout(config.dropout)
        )
        
        self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
        self.config.use_weighted_layer_sum = False

        # Initialize weights and apply final processing
        self.post_init()

    def freeze_encoder(self):
        """
        Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
        not be updated during training. Only the projection layers and classification head will be updated.
        """
        self.encoder._freeze_parameters()

    def get_input_embeddings(self) -> nn.Module:
        return self.encoder.get_input_embeddings()

    def set_input_embeddings(self, value: nn.Module):
        self.encoder.set_input_embeddings(value)

    @add_start_docstrings_to_model_forward(WHISPER_ENCODER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_features: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Example:

        ```python
        >>> import torch
        >>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification
        >>> from datasets import load_dataset

        >>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id")
        >>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id")

        >>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True)
        >>> sample = next(iter(ds))

        >>> inputs = feature_extractor(
        ...     sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt"
        ... )
        >>> input_features = inputs.input_features

        >>> with torch.no_grad():
        ...     logits = model(input_features).logits

        >>> predicted_class_ids = torch.argmax(logits).item()
        >>> predicted_label = model.config.id2label[predicted_class_ids]
        >>> predicted_label
        'Afrikaans'
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        if self.config.use_weighted_layer_sum:
            output_hidden_states = True
        elif output_hidden_states is None:
            output_hidden_states = self.config.output_hidden_states

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_features,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

        if self.config.use_weighted_layer_sum:
            hidden_states = encoder_outputs[_HIDDEN_STATES_START_POSITION]
            hidden_states = torch.stack(hidden_states, dim=1)
            norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
            hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
        else:
            hidden_states = encoder_outputs[0]
        
        hidden_states = self.projector(hidden_states)
        pooled_output = hidden_states.mean(dim=1)

        logits = self.classifier(pooled_output)

        loss = None

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # move labels to correct device to enable PP
            labels = labels.to(logits.device)
            loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + encoder_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )