File size: 23,637 Bytes
d09f0be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
# Modified from:
# LlamaGen: https://github.com/FoundationVision/LlamaGen/
# YOCO: https://github.com/microsoft/unilm/tree/master/YOCO
import math
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from einops import rearrange
from typing import Dict, List, Optional
from dataclasses import dataclass
from transformers.configuration_utils import PretrainedConfig
def find_multiple(n: int, k: int):
if n % k == 0:
return n
return n + k - (n % k)
def batch_seq_shuffle(x, orders=None):
assert x.ndim >= 2, "The input should contain at least two dimensions, batch and length"
bs, seq_len = x.shape[:2]
if orders is None:
orders = torch.rand(bs, seq_len, device=x.device).argsort(dim=1)
orders_expand = orders.view(*orders.shape, *(1,) * (x.ndim - orders.ndim))
shuffled_data = torch.gather(x, 1, orders_expand.expand(*x.shape))
return shuffled_data, orders
# @dataclass
class ModelArgs(PretrainedConfig):
def __init__(
self,
dim: int = 4096,
n_layer: int = 32,
n_head: int = 32,
multiple_of: int = 256, # make SwiGLU hidden layer size multiple of large power of 2
ffn_dim_multiplier: Optional[float] = None,
rope_base: float = 10000,
norm_eps: float = 1e-5,
initializer_range: float = 0.02,
token_dropout_p: float = 0.1,
attn_dropout_p: float = 0.0,
resid_dropout_p: float = 0.1,
ffn_dropout_p: float = 0.1,
drop_path_rate: float = 0.0,
num_classes: int = 1000,
class_dropout_prob: float = 0.1,
model_type: str = 'c2i',
vocab_size: int = 16384,
cls_token_num: int = 1,
block_size: int = 256,
):
self.dim = dim
self.n_layer = n_layer
self.n_head = n_head
self.multiple_of = multiple_of
self.ffn_dim_multiplier = ffn_dim_multiplier
self.rope_base = rope_base
self.norm_eps = norm_eps
self.initializer_range = initializer_range
self.token_dropout_p = token_dropout_p
self.attn_dropout_p = attn_dropout_p
self.resid_dropout_p = resid_dropout_p
self.ffn_dropout_p = ffn_dropout_p
self.drop_path_rate = drop_path_rate
self.num_classes = num_classes
self.class_dropout_prob = class_dropout_prob
self.model_type = model_type
self.vocab_size = vocab_size
self.cls_token_num = cls_token_num
self.block_size = block_size
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class FeedForward(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
hidden_dim = 4 * config.dim
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if config.ffn_dim_multiplier is not None:
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
hidden_dim = find_multiple(hidden_dim, config.multiple_of)
self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)
def forward(self, x):
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class Attention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
assert config.dim % config.n_head == 0
self.dim = config.dim
self.n_head = config.n_head
self.head_dim = config.dim // config.n_head
self.to_q = nn.Linear(config.dim, config.dim, bias=False)
self.to_k = nn.Linear(config.dim, config.dim, bias=False)
self.to_v = nn.Linear(config.dim, config.dim, bias=False)
self.proj = nn.Linear(config.dim, config.dim, bias=False)
self.attn_drop = config.attn_dropout_p
self.proj_drop = nn.Dropout(config.resid_dropout_p)
self.kv_cache = False
self.k_cache = None
self.v_cache = None
def reset_kv_cache(self):
self.k_cache = None
self.v_cache = None
def update_kv_cache(self, k: torch.Tensor, v: torch.Tensor):
if self.k_cache is None and self.v_cache is None:
k_cache = k
v_cache = v
else:
k_cache = torch.cat([self.k_cache, k], dim=-2)
v_cache = torch.cat([self.v_cache, v], dim=-2)
self.k_cache = k_cache
self.v_cache = v_cache
return k_cache, v_cache
def forward(
self,
x: torch.Tensor,
freqs_cis: torch.Tensor = None
):
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=self.n_head), (q, k, v))
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
if self.kv_cache:
k, v = self.update_kv_cache(k, v)
output = F.scaled_dot_product_attention(
q, k, v,
attn_mask=None,
is_causal=True if self.training else False,
dropout_p=self.attn_drop if self.training else 0
)
output = rearrange(output, 'b h n d -> b n (h d)').contiguous()
output = self.proj_drop(self.proj(output))
return output
class CrossAttention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
assert config.dim % config.n_head == 0
self.dim = config.dim
self.n_head = config.n_head
self.head_dim = config.dim // config.n_head
self.to_q = nn.Linear(config.dim, config.dim, bias=False)
self.proj = nn.Linear(config.dim, config.dim, bias=False)
self.attn_drop = config.attn_dropout_p
self.proj_drop = nn.Dropout(config.resid_dropout_p)
self.kv_cache = False
self.k_cache = None
self.v_cache = None
def reset_kv_cache(self):
self.k_cache = None
self.v_cache = None
def update_kv_cache(self, k: torch.Tensor, v: torch.Tensor):
if self.k_cache is None and self.v_cache is None:
k_cache = k
v_cache = v
else:
k_cache = torch.cat([self.k_cache, k], dim=-2)
v_cache = torch.cat([self.v_cache, v], dim=-2)
self.k_cache = k_cache
self.v_cache = v_cache
return k_cache, v_cache
def forward(
self,
x: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
freqs_cis: torch.Tensor = None
):
q = self.to_q(x)
q = rearrange(q, 'b n (h d) -> b n h d', h=self.n_head)
# target-aware
q = apply_rotary_emb(q, freqs_cis[:, -q.shape[1]:, ...])
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
if self.kv_cache:
k, v = self.update_kv_cache(k, v)
output = F.scaled_dot_product_attention(
q, k, v,
attn_mask=None,
is_causal=True if self.training else False,
dropout_p=self.attn_drop if self.training else 0
)
output = rearrange(output, 'b h n d -> b n (h d)').contiguous()
output = self.proj_drop(self.proj(output))
return output
class SelfDecoder(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.attn = Attention(config)
self.ffn = FeedForward(config)
self.attn_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
def forward(
self,
x: torch.Tensor,
freqs_cis: torch.Tensor = None
):
h = x + self.attn(x=self.attn_norm(x), freqs_cis=freqs_cis[:, :x.shape[1], ...])
out = h + self.ffn(self.ffn_norm(h))
return out
class CrossDecoder(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.attn = CrossAttention(config)
self.ffn = FeedForward(config)
self.attn_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
def forward(
self,
x: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
freqs_cis: torch.Tensor = None
):
h = x + self.attn(x=self.attn_norm(x), k=k, v=v, freqs_cis=freqs_cis)
out = h + self.ffn(self.ffn_norm(h))
return out
class Decoder_Decoder(nn.Module):
def __init__(self, config: ModelArgs, n_layer):
super().__init__()
self.config = config
self.self_dec = nn.ModuleList([SelfDecoder(config) for _ in range(n_layer//2)])
self.cross_dec = nn.ModuleList([CrossDecoder(config) for _ in range(n_layer//2)])
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
self.to_k = nn.Linear(config.dim, config.dim, bias=False)
self.to_v = nn.Linear(config.dim, config.dim, bias=False)
self.kv_cache = False
self.k_cache = None
self.v_cache = None
def reset_kv_cache(self):
self.k_cache = None
self.v_cache = None
def update_kv_cache(self, k: torch.Tensor, v: torch.Tensor, head_first=False):
t_dim = 2 if head_first else 1
if self.k_cache is None and self.v_cache is None:
k_cache = k
v_cache = v
else:
k_cache = torch.cat([self.k_cache, k], dim=t_dim)
v_cache = torch.cat([self.v_cache, v], dim=t_dim)
self.k_cache = k_cache
self.v_cache = v_cache
return k_cache, v_cache
def forward(
self,
x: torch.Tensor,
q: torch.Tensor,
freqs_cis: torch.Tensor = None
):
for layer in self.self_dec:
x = layer(x=x, freqs_cis=freqs_cis)
x_norm = self.norm(x)
k = self.to_k(x_norm)
v = self.to_v(x_norm)
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=self.config.n_head), (k, v))
k = apply_rotary_emb(k, freqs_cis[:, :k.shape[1], ...])
if self.kv_cache:
k, v = self.update_kv_cache(k, v)
for layer in self.cross_dec:
q = layer(x=q, k=k, v=v, freqs_cis=freqs_cis)
return q
class Transformer(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.image_seq_len = config.block_size
"""
ref: https://github.com/bytedance/1d-tokenizer/blob/main/modeling/rar.py
Token space:
[0, vocab_size - 1] : those are the learned quantized image tokens
[vocab_size] : the mask token id
[vocab_size + 1, vocab_size + num_classes] : the imagenet class tokens
[vocab_size + num_classes + 1] : the class drop label
[vocab_size + num_classes + 2] : the drop token for scg
"""
self.embeddings = nn.Embedding(config.vocab_size + 1 + config.num_classes + 1 + 1, config.dim)
self.embed_drop = nn.Dropout(config.token_dropout_p)
self.mask_token_id = config.vocab_size
self.none_conds_id = config.vocab_size + config.num_classes + 1
self.none_token_id = config.vocab_size + config.num_classes + 2
# 2-pass decoder
self.layers = Decoder_Decoder(config, config.n_layer)
# output layer
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
self.head = nn.Linear(config.dim, config.vocab_size, bias=False)
# 2d rotary pos embedding
grid_size = int(self.image_seq_len ** 0.5)
self.freqs_cis = precompute_freqs_cis_2d(grid_size, config.dim // config.n_head, config.rope_base, config.cls_token_num)
self.initialize_weights()
def initialize_weights(self):
# Initialize nn.Linear and nn.Embedding
self.apply(self._init_weights)
# Zero-out output layers:
nn.init.constant_(self.head.weight, 0)
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
def setup_kv_cache(self, enable=True):
for block in self.layers.self_dec:
block.attn.kv_cache = enable
block.attn.reset_kv_cache()
self.layers.kv_cache = enable
self.layers.reset_kv_cache()
def preprocess_condition(self, condition, cond_drop_prob=0.0):
# Set class condition to None condition
drop_label_mask = torch.rand_like(condition, dtype=torch.float) < cond_drop_prob
condition = condition + self.config.vocab_size + 1 # [0, 999] -> [codebook_size + 1, codebook_size + 999]
condition[drop_label_mask] = self.none_conds_id
if condition.ndim == 1:
condition = condition.unsqueeze(-1)
return condition
def forward_shared(self, input_ids, freqs_cis, num_query=None):
embedds = self.embeddings(input_ids)
x = self.embed_drop(embedds)
num_query = input_ids.shape[-1] if num_query == None else num_query
queries = self.embeddings(torch.full((input_ids.shape[0], num_query), self.mask_token_id, device=input_ids.device))
x = self.layers(x, queries, freqs_cis=freqs_cis)
logits = self.head(self.norm(x)).float()
return logits
def forward(self, input_ids, condition, targets=None, debug=False):
# shift class id and dropout for classifier-free guidance
condition = self.preprocess_condition(condition, cond_drop_prob=self.config.class_dropout_prob)
# shuffle input
shuffled_ids, orders = batch_seq_shuffle(input_ids)
# shuffle RoPE
freqs_cis = self.freqs_cis.unsqueeze(0).repeat(input_ids.shape[0], 1, 1, 1).to(input_ids.device)
fixed_freqs_cis = freqs_cis[:, :1, ...]
shuffled_freqs_cis = batch_seq_shuffle(freqs_cis[:, 1:, ...], orders)[0]
freqs_cis = torch.cat([fixed_freqs_cis, shuffled_freqs_cis], dim=1)
# teacher-forcing input
logits = self.forward_shared(torch.cat([condition, shuffled_ids[:, :-1]], dim=-1), freqs_cis)
loss = None
if targets is not None:
targets = batch_seq_shuffle(targets, orders)[0]
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
@torch.inference_mode()
def generate(
self,
condition,
guidance_scale=4.0,
cfg_schedule='linear',
sample_schedule='arccos',
temperature=1.0,
top_k=0,
top_p=1,
seq_len=256,
num_iter=64,
):
device = condition.device
num_samples = condition.shape[0]
freqs_cis_ = self.freqs_cis.unsqueeze(0).to(device)
# shift condition id
condition = self.preprocess_condition(condition, cond_drop_prob=0.0)
# generate a random order
orders = torch.rand(256, device=device).argsort(dim=0) + 1
last_pos = 0
last_range = range(0, 1) # for class token, hardcode
sequences = []
self.setup_kv_cache(enable=True)
for step in range(num_iter):
if sample_schedule == 'arccos':
mask_ratio = np.arccos(1. * (step + 1) / num_iter) / (math.pi * 0.5)
elif sample_schedule == 'cosine':
mask_ratio = np.cos(math.pi / 2. * (step + 1) / num_iter)
else:
raise NotImplementedError
mask_len = int(seq_len * mask_ratio)
mask_len = max(1, min(seq_len - last_pos - 1, mask_len))
num_pred = seq_len - last_pos - mask_len
if step == num_iter - 1:
num_pred = seq_len - last_pos
next_range = orders[range(last_pos, last_pos + num_pred)]
last_pos += num_pred
if cfg_schedule == 'linear':
cfg_scale = 1.0 + (guidance_scale - 1.0) * last_pos / seq_len
elif cfg_schedule == 'constant':
cfg_scale = guidance_scale
else:
raise NotImplementedError
"""
1. Since the cached key has already had rotary embedding applied,
we only need to input the current position's frequencies for key.
2. We need the next position's frequencies for query to achieve target-aware guidance.
"""
freqs_cis = torch.cat([
freqs_cis_[:, last_range, ...],
freqs_cis_[:, next_range, ...]], dim=1
)
if guidance_scale != 0:
if step == 0:
input_ids = torch.cat([condition, torch.full_like(condition, self.none_conds_id)], dim=0)
else:
input_ids = torch.cat([sequences[-1], sequences[-1]], dim=0)
logits = self.forward_shared(input_ids, freqs_cis, num_pred)
cond_logits, uncond_logits = logits[:num_samples], logits[num_samples:]
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
else:
raise NotImplementedError
# keep the logits of last n-tokens
logits = logits[:, -num_pred:] / max(temperature, 1e-5)
if top_k > 0 or top_p < 1.0:
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
probs = F.softmax(logits, dim=-1)
sampled = torch.multinomial(probs.flatten(0, 1), num_samples=1)
sequences.append(sampled.reshape(num_samples, -1))
last_range = next_range
self.setup_kv_cache(enable=False)
sequences = torch.cat(sequences, dim=-1)
return sequences[:, orders.argsort(dim=0)]
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120):
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2)
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2)
return cond_cache
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120):
# split the dimension into half, one for x and one for y
half_dim = n_elem // 2
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
t = torch.arange(grid_size, device=freqs.device)
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
freqs_grid = torch.concat([
freqs[:, None, :].expand(-1, grid_size, -1),
freqs[None, :, :].expand(grid_size, -1, -1),
], dim=-1) # (grid_size, grid_size, head_dim // 2)
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
cache = cache_grid.flatten(0, 1)
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
return cond_cache
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
# x: (bs, seq_len, n_head, head_dim)
# freqs_cis (seq_len, head_dim // 2, 2)
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
freqs_cis = freqs_cis.view(-1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2)
x_out2 = torch.stack([
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
], dim=-1)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
def top_k_top_p_filtering(
logits,
top_k: int = 0,
top_p: float = 1.0,
filter_value: float = -float("Inf"),
min_tokens_to_keep: int = 1,
):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = filter_value
return logits
def ARPG_XXL(**kwargs):
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs))
def ARPG_XL(**kwargs):
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs))
def ARPG_L(**kwargs):
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs))
ARPG_models = {'ARPG-L': ARPG_L, 'ARPG-XL': ARPG_XL, 'ARPG-XXL': ARPG_XXL} |