Audio-Text-to-Text
Safetensors
English
llama
sound language model
torchtune
jan-hq commited on
Commit
67a608f
1 Parent(s): 6e9699d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -1
README.md CHANGED
@@ -12,7 +12,7 @@ tags:
12
 
13
  We have developed and released the family [Ichigo-llama3s](https://huggingface.co/collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input.
14
 
15
- This model is a supervised fine-tuned (SFT) version of homebrewltd/Ichigo-llama3.1-s-base-v0.3, trained on over 1 billion tokens from the [Instruction Speech WhisperVQ v4](jan-hq/mixed-instruction-speech-whispervq-v3-full-phase2-3) dataset which built upon [Instruction Speech WhisperVQ v3](homebrewltd/mixed-instruction-speech-whispervq-v3-full), adding multi-turn speech conversations and noise rejection capabilities for enhanced performance. As a result, the model demonstrates improved robustness against noisy environmental inputs and enhanced multi-turn conversation capabilities, making it more reliable in real-world applications.
16
 
17
  **Model developers** Homebrew Research.
18
 
 
12
 
13
  We have developed and released the family [Ichigo-llama3s](https://huggingface.co/collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input.
14
 
15
+ This model is a supervised fine-tuned (SFT) version of homebrewltd/Ichigo-llama3.1-s-base-v0.3, trained on over 1 billion tokens from the [Instruction Speech WhisperVQ v4](https://huggingface.co/datasets/homebrewltd/mixed-instruction-speech-whispervq-v4) dataset which built upon [Instruction Speech WhisperVQ v3](https://huggingface.co/datasets/homebrewltd/mixed-instruction-speech-whispervq-v3-full), adding multi-turn speech conversations and noise rejection capabilities for enhanced performance. As a result, the model demonstrates improved robustness against noisy environmental inputs and enhanced multi-turn conversation capabilities, making it more reliable in real-world applications.
16
 
17
  **Model developers** Homebrew Research.
18