Xinyue Hu commited on
Commit
fc04dc6
1 Parent(s): a951273

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -37
README.md CHANGED
@@ -22,10 +22,10 @@ model-index:
22
  metrics:
23
  - name: Rouge1
24
  type: rouge
25
- value: 0.2892828477539953
26
  - name: Bleu
27
  type: bleu
28
- value: 0.09269389807461934
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -35,15 +35,18 @@ should probably proofread and complete it, then remove this comment. -->
35
 
36
  This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the imagefolder dataset.
37
  It achieves the following results on the evaluation set:
38
- - Loss: 0.3234
39
- - Wer Score: 2.8324
40
- - Rouge1: 0.2893
41
- - Rouge2: 0.1553
42
- - Rougel: 0.2580
43
- - Rougelsum: 0.2581
44
- - Meteor: 0.4702
45
- - Bleu: 0.0927
46
- - Bleu precisions: [0.19773408749396806, 0.11271121828401212, 0.07041869841876251, 0.047040063834047824]
 
 
 
47
 
48
  ## Model description
49
 
@@ -70,36 +73,30 @@ The following hyperparameters were used during training:
70
  - total_train_batch_size: 224
71
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
  - lr_scheduler_type: linear
73
- - num_epochs: 40
74
  - mixed_precision_training: Native AMP
75
 
76
  ### Training results
77
 
78
- | Training Loss | Epoch | Step | Validation Loss | Wer Score | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor | Bleu | Bleu precisions |
79
- |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:------:|:---------:|:------:|:------:|:-------------------------------------------------------------------------------------:|
80
- | 0.7742 | 1.7 | 1000 | 0.2768 | 3.6442 | 0.2183 | 0.1135 | 0.1960 | 0.1960 | 0.4151 | 0.0767 | [0.16930678895753237, 0.09557836133795246, 0.05745933755000988, 0.03719485051124419] |
81
- | 0.2757 | 3.4 | 2000 | 0.2530 | 3.5078 | 0.2344 | 0.1280 | 0.2111 | 0.2111 | 0.4438 | 0.0866 | [0.18094996558095722, 0.1062941982267445, 0.0660909502265641, 0.04415642702225686] |
82
- | 0.2558 | 5.11 | 3000 | 0.2431 | 3.5981 | 0.2321 | 0.1292 | 0.2104 | 0.2104 | 0.4488 | 0.0871 | [0.17891643241063893, 0.10662635003059268, 0.06724109416177619, 0.04494076673073175] |
83
- | 0.2435 | 6.81 | 4000 | 0.2340 | 3.5928 | 0.2351 | 0.1337 | 0.2139 | 0.2139 | 0.4576 | 0.0909 | [0.18105927626402774, 0.11015864269439932, 0.07084035989457634, 0.04838043468996083] |
84
- | 0.2341 | 8.51 | 5000 | 0.2283 | 3.5825 | 0.2379 | 0.1374 | 0.2168 | 0.2168 | 0.4641 | 0.0935 | [0.18283567465782452, 0.11268246996142758, 0.07331907529684983, 0.0505040077040832] |
85
- | 0.2265 | 10.21 | 6000 | 0.2246 | 3.5432 | 0.2424 | 0.1415 | 0.2211 | 0.2211 | 0.4718 | 0.0961 | [0.1857985595024412, 0.11537502356732557, 0.07570186326781568, 0.05252149630642548] |
86
- | 0.2203 | 11.91 | 7000 | 0.2207 | 3.4183 | 0.2511 | 0.1480 | 0.2298 | 0.2298 | 0.4795 | 0.0973 | [0.1857490628497766, 0.11647364168304132, 0.07701231893556303, 0.053783746414351505] |
87
- | 0.2143 | 13.62 | 8000 | 0.2182 | 3.1230 | 0.2718 | 0.1608 | 0.2485 | 0.2485 | 0.4922 | 0.0985 | [0.1871246642347378, 0.11779841874899488, 0.07811713540422874, 0.054763192765544234] |
88
- | 0.2094 | 15.32 | 9000 | 0.2168 | 3.5355 | 0.2473 | 0.1472 | 0.2257 | 0.2257 | 0.4833 | 0.0998 | [0.18881918229416875, 0.1190513020004344, 0.0792775774175806, 0.05572707164637924] |
89
- | 0.2038 | 17.02 | 10000 | 0.2160 | 3.4545 | 0.2543 | 0.1509 | 0.2310 | 0.2310 | 0.4891 | 0.1007 | [0.1902420103501397, 0.11991652989168618, 0.07994424738353746, 0.05637425111890453] |
90
- | 0.1967 | 18.72 | 11000 | 0.2173 | 3.3373 | 0.2641 | 0.1559 | 0.2388 | 0.2388 | 0.4945 | 0.1016 | [0.19316197072023297, 0.12102576025295267, 0.08048056261991486, 0.056670825893034946] |
91
- | 0.1884 | 20.43 | 12000 | 0.2221 | 3.0745 | 0.2862 | 0.1681 | 0.2584 | 0.2584 | 0.5010 | 0.1039 | [0.19918408147408226, 0.12401633746143571, 0.08199896497939006, 0.05751641776005364] |
92
- | 0.179 | 22.13 | 13000 | 0.2294 | 2.9232 | 0.3017 | 0.1747 | 0.2710 | 0.2710 | 0.5036 | 0.1027 | [0.19968719829990308, 0.12253582577044991, 0.08059124511363425, 0.05632795013912335] |
93
- | 0.1676 | 23.83 | 14000 | 0.2358 | 2.8863 | 0.3017 | 0.1741 | 0.2714 | 0.2714 | 0.5022 | 0.1041 | [0.20393480253606525, 0.12448069284204198, 0.08151878403794971, 0.056659933056666174] |
94
- | 0.1562 | 25.53 | 15000 | 0.2478 | 2.8259 | 0.3036 | 0.1730 | 0.2728 | 0.2728 | 0.4980 | 0.1039 | [0.20674579460384884, 0.12461471833607483, 0.08099930020993702, 0.055934016820835084] |
95
- | 0.1463 | 27.23 | 16000 | 0.2588 | 2.7604 | 0.3066 | 0.1728 | 0.2748 | 0.2748 | 0.4965 | 0.1021 | [0.2053763571102686, 0.12266641124678603, 0.07922919125284283, 0.05440373665093972] |
96
- | 0.1367 | 28.94 | 17000 | 0.2681 | 2.8889 | 0.2945 | 0.1650 | 0.2642 | 0.2643 | 0.4872 | 0.0987 | [0.2002396944625925, 0.11880872600001989, 0.0763248805512799, 0.052217189262938515] |
97
- | 0.1276 | 30.64 | 18000 | 0.2811 | 2.7054 | 0.3062 | 0.1696 | 0.2743 | 0.2743 | 0.4891 | 0.1009 | [0.2075584522604372, 0.12181684833069355, 0.07765563632441028, 0.05272764092006992] |
98
- | 0.1198 | 32.34 | 19000 | 0.2925 | 2.8151 | 0.2945 | 0.1616 | 0.2633 | 0.2633 | 0.4811 | 0.0972 | [0.20216857878455405, 0.11754981616789531, 0.07455271799398129, 0.0503977409292061] |
99
- | 0.1133 | 34.04 | 20000 | 0.3031 | 2.8563 | 0.2910 | 0.1580 | 0.2599 | 0.2599 | 0.4758 | 0.0955 | [0.20084995564059396, 0.11580160477587004, 0.07298742511539595, 0.04909252992133042] |
100
- | 0.1066 | 35.74 | 21000 | 0.3114 | 2.8931 | 0.2864 | 0.1548 | 0.2557 | 0.2557 | 0.4715 | 0.0930 | [0.1969209496796176, 0.11291130154563171, 0.07089499015389361, 0.047528935183720734] |
101
- | 0.1018 | 37.45 | 22000 | 0.3191 | 2.8514 | 0.2884 | 0.1552 | 0.2572 | 0.2572 | 0.4708 | 0.0931 | [0.19810372685233638, 0.11312981011747879, 0.0707889148571459, 0.04735648678945608] |
102
- | 0.0982 | 39.15 | 23000 | 0.3234 | 2.8324 | 0.2893 | 0.1553 | 0.2580 | 0.2581 | 0.4702 | 0.0927 | [0.19773408749396806, 0.11271121828401212, 0.07041869841876251, 0.047040063834047824] |
103
 
104
 
105
  ### Framework versions
 
22
  metrics:
23
  - name: Rouge1
24
  type: rouge
25
+ value: 0.3058988098589094
26
  - name: Bleu
27
  type: bleu
28
+ value: 0.10580263597345552
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the imagefolder dataset.
37
  It achieves the following results on the evaluation set:
38
+ - Loss: 0.2473
39
+ - Wer Score: 2.7325
40
+ - Rouge1: 0.3059
41
+ - Rouge2: 0.1738
42
+ - Rougel: 0.2760
43
+ - Rougelsum: 0.2759
44
+ - Meteor: 0.4991
45
+ - Bleu: 0.1058
46
+ - Bleu1: 0.2113
47
+ - Bleu2: 0.1272
48
+ - Bleu3: 0.0824
49
+ - Bleu4: 0.0566
50
 
51
  ## Model description
52
 
 
73
  - total_train_batch_size: 224
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - num_epochs: 30
77
  - mixed_precision_training: Native AMP
78
 
79
  ### Training results
80
 
81
+ | Training Loss | Epoch | Step | Validation Loss | Wer Score | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor | Bleu | Bleu1 | Bleu2 | Bleu3 | Bleu4 |
82
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:------:|:---------:|:------:|:------:|:------:|:------:|:------:|:------:|
83
+ | 0.774 | 1.7 | 1000 | 0.2771 | 3.5978 | 0.2206 | 0.1145 | 0.1981 | 0.1981 | 0.4163 | 0.0774 | 0.1712 | 0.0965 | 0.0580 | 0.0375 |
84
+ | 0.2763 | 3.4 | 2000 | 0.2537 | 3.6165 | 0.2273 | 0.1237 | 0.2050 | 0.2050 | 0.4374 | 0.0840 | 0.1757 | 0.1032 | 0.0642 | 0.0428 |
85
+ | 0.2567 | 5.11 | 3000 | 0.2423 | 3.5963 | 0.2317 | 0.1299 | 0.2105 | 0.2105 | 0.4500 | 0.0881 | 0.1790 | 0.1074 | 0.0681 | 0.0460 |
86
+ | 0.2447 | 6.81 | 4000 | 0.2349 | 3.5915 | 0.2352 | 0.1336 | 0.2136 | 0.2136 | 0.4573 | 0.0907 | 0.1812 | 0.1100 | 0.0706 | 0.0481 |
87
+ | 0.2357 | 8.51 | 5000 | 0.2297 | 3.5867 | 0.2364 | 0.1364 | 0.2158 | 0.2158 | 0.4617 | 0.0927 | 0.1820 | 0.1120 | 0.0726 | 0.0499 |
88
+ | 0.2287 | 10.21 | 6000 | 0.2258 | 3.5781 | 0.2393 | 0.1392 | 0.2183 | 0.2183 | 0.4681 | 0.0947 | 0.1837 | 0.1139 | 0.0745 | 0.0515 |
89
+ | 0.2228 | 11.91 | 7000 | 0.2223 | 3.5628 | 0.2413 | 0.1419 | 0.2208 | 0.2208 | 0.4734 | 0.0965 | 0.1853 | 0.1158 | 0.0762 | 0.0531 |
90
+ | 0.2173 | 13.62 | 8000 | 0.2200 | 3.5171 | 0.2459 | 0.1452 | 0.2249 | 0.2249 | 0.4779 | 0.0976 | 0.1860 | 0.1167 | 0.0773 | 0.0540 |
91
+ | 0.2132 | 15.32 | 9000 | 0.2184 | 3.5207 | 0.2461 | 0.1464 | 0.2253 | 0.2254 | 0.4804 | 0.0994 | 0.1885 | 0.1187 | 0.0789 | 0.0553 |
92
+ | 0.2085 | 17.02 | 10000 | 0.2174 | 3.5189 | 0.2484 | 0.1468 | 0.2259 | 0.2259 | 0.4842 | 0.0998 | 0.1895 | 0.1190 | 0.0791 | 0.0555 |
93
+ | 0.2027 | 18.72 | 11000 | 0.2179 | 3.2891 | 0.2656 | 0.1571 | 0.2411 | 0.2411 | 0.4952 | 0.1036 | 0.1970 | 0.1233 | 0.0820 | 0.0577 |
94
+ | 0.1961 | 20.43 | 12000 | 0.2213 | 3.3457 | 0.2610 | 0.1534 | 0.2367 | 0.2367 | 0.4900 | 0.1025 | 0.1962 | 0.1223 | 0.0810 | 0.0568 |
95
+ | 0.1886 | 22.13 | 13000 | 0.2260 | 2.9878 | 0.2914 | 0.1696 | 0.2628 | 0.2628 | 0.5028 | 0.1053 | 0.2040 | 0.1257 | 0.0828 | 0.0579 |
96
+ | 0.1797 | 23.83 | 14000 | 0.2305 | 3.0250 | 0.2874 | 0.1668 | 0.2597 | 0.2597 | 0.4987 | 0.1053 | 0.2051 | 0.1259 | 0.0827 | 0.0575 |
97
+ | 0.1713 | 25.53 | 15000 | 0.2376 | 2.7048 | 0.3125 | 0.1797 | 0.2822 | 0.2822 | 0.5062 | 0.1078 | 0.2125 | 0.1291 | 0.0843 | 0.0583 |
98
+ | 0.1646 | 27.23 | 16000 | 0.2438 | 2.7129 | 0.3087 | 0.1761 | 0.2786 | 0.2785 | 0.5021 | 0.1066 | 0.2120 | 0.1281 | 0.0831 | 0.0573 |
99
+ | 0.159 | 28.94 | 17000 | 0.2473 | 2.7325 | 0.3059 | 0.1738 | 0.2760 | 0.2759 | 0.4991 | 0.1058 | 0.2113 | 0.1272 | 0.0824 | 0.0566 |
 
 
 
 
 
 
100
 
101
 
102
  ### Framework versions