Upload modeling_mpt.py
Browse files- modeling_mpt.py +327 -0
modeling_mpt.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A simple, flexible implementation of a GPT model.
|
2 |
+
|
3 |
+
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from transformers import PreTrainedModel, PreTrainedTokenizerBase
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
+
from .attention import attn_bias_shape, build_attn_bias
|
14 |
+
from .blocks import MPTBlock
|
15 |
+
from .custom_embedding import SharedEmbedding
|
16 |
+
from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
|
17 |
+
from .ffn import FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY
|
18 |
+
from .ffn import MPTMLP as MPTMLP
|
19 |
+
from .ffn import build_ffn as build_ffn
|
20 |
+
from .norm import NORM_CLASS_REGISTRY
|
21 |
+
from .configuration_mpt import MPTConfig
|
22 |
+
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
23 |
+
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
24 |
+
from .meta_init_context import init_empty_weights
|
25 |
+
from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY
|
26 |
+
try:
|
27 |
+
from .flash_attn_triton import flash_attn_func as flash_attn_func
|
28 |
+
except:
|
29 |
+
pass
|
30 |
+
import logging
|
31 |
+
log = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
class MPTPreTrainedModel(PreTrainedModel):
|
34 |
+
config_class = MPTConfig
|
35 |
+
base_model_prefix = 'model'
|
36 |
+
_no_split_modules = ['MPTBlock']
|
37 |
+
|
38 |
+
class MPTModel(MPTPreTrainedModel):
|
39 |
+
|
40 |
+
def __init__(self, config: MPTConfig):
|
41 |
+
config._validate_config()
|
42 |
+
super().__init__(config)
|
43 |
+
self.attn_impl = config.attn_config['attn_impl']
|
44 |
+
self.prefix_lm = config.attn_config['prefix_lm']
|
45 |
+
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
46 |
+
self.alibi = config.attn_config['alibi']
|
47 |
+
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
48 |
+
self.learned_pos_emb = config.learned_pos_emb
|
49 |
+
if config.init_device == 'mixed':
|
50 |
+
if dist.get_local_rank() == 0:
|
51 |
+
config.init_device = 'cpu'
|
52 |
+
else:
|
53 |
+
config.init_device = 'meta'
|
54 |
+
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
55 |
+
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
56 |
+
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
57 |
+
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
58 |
+
self.embedding_fraction = config.embedding_fraction
|
59 |
+
self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
|
60 |
+
if self.learned_pos_emb:
|
61 |
+
self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
62 |
+
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
63 |
+
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
64 |
+
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
65 |
+
if config.init_device != 'meta':
|
66 |
+
log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
|
67 |
+
self.apply(self.param_init_fn)
|
68 |
+
self.is_causal = not self.prefix_lm
|
69 |
+
self._attn_bias_initialized = False
|
70 |
+
self.attn_bias = None
|
71 |
+
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
|
72 |
+
if config.no_bias:
|
73 |
+
for module in self.modules():
|
74 |
+
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
75 |
+
log.info(f'Removing bias ({module.bias}) from {module}.')
|
76 |
+
module.register_parameter('bias', None)
|
77 |
+
if hasattr(module, 'use_bias'):
|
78 |
+
log.info(f'Setting use_bias=False for {module}.')
|
79 |
+
module.use_bias = False
|
80 |
+
log.debug(self)
|
81 |
+
log.debug(f"Using {self.config.init_config['name']} initialization.")
|
82 |
+
|
83 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
84 |
+
return self.wte
|
85 |
+
|
86 |
+
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
87 |
+
self.wte = value
|
88 |
+
|
89 |
+
@torch.no_grad()
|
90 |
+
def _attn_bias(self, device: torch.device, dtype: torch.dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]:
|
91 |
+
if not self._attn_bias_initialized:
|
92 |
+
if self.attn_bias_shape:
|
93 |
+
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
94 |
+
self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
|
95 |
+
self._attn_bias_initialized = True
|
96 |
+
if self.attn_impl == 'flash':
|
97 |
+
return (self.attn_bias, attention_mask)
|
98 |
+
if self.attn_bias is not None:
|
99 |
+
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
|
100 |
+
attn_bias = self.attn_bias
|
101 |
+
if self.prefix_lm:
|
102 |
+
assert isinstance(attn_bias, torch.Tensor)
|
103 |
+
assert isinstance(prefix_mask, torch.Tensor)
|
104 |
+
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
105 |
+
if self.attn_uses_sequence_id and sequence_id is not None:
|
106 |
+
assert isinstance(attn_bias, torch.Tensor)
|
107 |
+
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
|
108 |
+
if attention_mask is not None:
|
109 |
+
s_k = attention_mask.shape[-1]
|
110 |
+
if attn_bias is None:
|
111 |
+
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
112 |
+
else:
|
113 |
+
_s_k = max(0, attn_bias.size(-1) - s_k)
|
114 |
+
attn_bias = attn_bias[:, :, :, _s_k:]
|
115 |
+
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
116 |
+
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
117 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
118 |
+
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
119 |
+
return (attn_bias, None)
|
120 |
+
|
121 |
+
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor) -> torch.Tensor:
|
122 |
+
(s_k, s_q) = attn_bias.shape[-2:]
|
123 |
+
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
124 |
+
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
125 |
+
seq_len = prefix_mask.shape[-1]
|
126 |
+
if seq_len > self.config.max_seq_len:
|
127 |
+
raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
128 |
+
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
129 |
+
causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
|
130 |
+
prefix = prefix_mask.view(-1, 1, 1, seq_len)
|
131 |
+
cannot_attend = ~torch.logical_or(causal, prefix.bool())
|
132 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
133 |
+
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
134 |
+
return attn_bias
|
135 |
+
|
136 |
+
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor) -> torch.Tensor:
|
137 |
+
seq_len = sequence_id.shape[-1]
|
138 |
+
if seq_len > self.config.max_seq_len:
|
139 |
+
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
140 |
+
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
141 |
+
cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
|
142 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
143 |
+
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
144 |
+
return attn_bias
|
145 |
+
|
146 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast:
|
147 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
148 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
149 |
+
if attention_mask is not None:
|
150 |
+
attention_mask = attention_mask.bool()
|
151 |
+
if prefix_mask is not None:
|
152 |
+
prefix_mask = prefix_mask.bool()
|
153 |
+
if not return_dict:
|
154 |
+
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
155 |
+
if output_attentions:
|
156 |
+
if self.attn_impl != 'torch':
|
157 |
+
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
|
158 |
+
if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
|
159 |
+
raise NotImplementedError('MPT does not support training with left padding.')
|
160 |
+
if self.prefix_lm and prefix_mask is None:
|
161 |
+
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
162 |
+
if inputs_embeds is not None:
|
163 |
+
raise NotImplementedError('inputs_embeds is not implemented for MPT.')
|
164 |
+
if self.training:
|
165 |
+
if self.attn_uses_sequence_id and sequence_id is None:
|
166 |
+
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
167 |
+
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
168 |
+
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
169 |
+
S = input_ids.size(1)
|
170 |
+
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
171 |
+
tok_emb = self.wte(input_ids)
|
172 |
+
if self.learned_pos_emb:
|
173 |
+
past_position = 0
|
174 |
+
if past_key_values is not None:
|
175 |
+
if len(past_key_values) != self.config.n_layers:
|
176 |
+
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
177 |
+
past_position = past_key_values[0][0].size(1)
|
178 |
+
if self.attn_impl == 'torch':
|
179 |
+
past_position = past_key_values[0][0].size(3)
|
180 |
+
if S + past_position > self.config.max_seq_len:
|
181 |
+
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
182 |
+
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
183 |
+
if attention_mask is not None:
|
184 |
+
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
185 |
+
pos_emb = self.wpe(pos)
|
186 |
+
x = tok_emb + pos_emb
|
187 |
+
else:
|
188 |
+
x = tok_emb
|
189 |
+
if self.embedding_fraction == 1:
|
190 |
+
x = self.emb_drop(x)
|
191 |
+
else:
|
192 |
+
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
193 |
+
assert isinstance(self.emb_drop, nn.Module)
|
194 |
+
x = self.emb_drop(x_shrunk)
|
195 |
+
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
196 |
+
presents = () if use_cache else None
|
197 |
+
if use_cache and past_key_values is None:
|
198 |
+
past_key_values = [() for _ in range(self.config.n_layers)]
|
199 |
+
all_hidden_states = () if output_hidden_states else None
|
200 |
+
all_self_attns = () if output_attentions else None
|
201 |
+
for (b_idx, block) in enumerate(self.blocks):
|
202 |
+
if output_hidden_states:
|
203 |
+
assert all_hidden_states is not None
|
204 |
+
all_hidden_states = all_hidden_states + (x,)
|
205 |
+
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
206 |
+
(x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions))
|
207 |
+
if presents is not None:
|
208 |
+
presents += (present,)
|
209 |
+
if output_attentions:
|
210 |
+
assert all_self_attns is not None
|
211 |
+
all_self_attns = all_self_attns + (attn_weights,)
|
212 |
+
x = self.norm_f(x)
|
213 |
+
if output_hidden_states:
|
214 |
+
assert all_hidden_states is not None
|
215 |
+
all_hidden_states = all_hidden_states + (x,)
|
216 |
+
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
|
217 |
+
|
218 |
+
def param_init_fn(self, module: nn.Module) -> None:
|
219 |
+
init_fn_name = self.config.init_config['name']
|
220 |
+
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
221 |
+
|
222 |
+
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
|
223 |
+
return isinstance(module, MPTBlock)
|
224 |
+
|
225 |
+
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
|
226 |
+
return isinstance(module, MPTBlock)
|
227 |
+
|
228 |
+
class MPTForCausalLM(MPTPreTrainedModel):
|
229 |
+
|
230 |
+
def __init__(self, config: MPTConfig):
|
231 |
+
super().__init__(config)
|
232 |
+
if not config.tie_word_embeddings:
|
233 |
+
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
234 |
+
log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
|
235 |
+
self.transformer: MPTModel = MPTModel(config)
|
236 |
+
for child in self.transformer.children():
|
237 |
+
if isinstance(child, torch.nn.ModuleList):
|
238 |
+
continue
|
239 |
+
if isinstance(child, torch.nn.Module):
|
240 |
+
child._fsdp_wrap = True
|
241 |
+
self.logit_scale = None
|
242 |
+
if config.logit_scale is not None:
|
243 |
+
logit_scale = config.logit_scale
|
244 |
+
if isinstance(logit_scale, str):
|
245 |
+
if logit_scale == 'inv_sqrt_d_model':
|
246 |
+
logit_scale = 1 / math.sqrt(config.d_model)
|
247 |
+
else:
|
248 |
+
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
249 |
+
self.logit_scale = logit_scale
|
250 |
+
|
251 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
252 |
+
return self.transformer.wte
|
253 |
+
|
254 |
+
def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
|
255 |
+
self.transformer.wte = value
|
256 |
+
|
257 |
+
def get_output_embeddings(self) -> nn.Embedding:
|
258 |
+
return self.transformer.wte
|
259 |
+
|
260 |
+
def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding]) -> None:
|
261 |
+
self.transformer.wte = new_embeddings
|
262 |
+
|
263 |
+
def set_decoder(self, decoder: MPTModel) -> None:
|
264 |
+
self.transformer = decoder
|
265 |
+
|
266 |
+
def get_decoder(self) -> MPTModel:
|
267 |
+
return self.transformer
|
268 |
+
|
269 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast:
|
270 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
271 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
272 |
+
if inputs_embeds is not None:
|
273 |
+
raise NotImplementedError('inputs_embeds has to be None (for hf/peft support).')
|
274 |
+
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
275 |
+
logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
|
276 |
+
if self.logit_scale is not None:
|
277 |
+
if self.logit_scale == 0:
|
278 |
+
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
279 |
+
logits *= self.logit_scale
|
280 |
+
loss = None
|
281 |
+
if labels is not None:
|
282 |
+
_labels = torch.roll(labels, shifts=-1)
|
283 |
+
_labels[:, -1] = -100
|
284 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
|
285 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
286 |
+
|
287 |
+
def param_init_fn(self, module: nn.Module) -> None:
|
288 |
+
init_fn_name = self.config.init_config['name']
|
289 |
+
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
290 |
+
|
291 |
+
def fsdp_wrap_fn(self, module: nn.Module) -> bool:
|
292 |
+
return isinstance(module, MPTBlock)
|
293 |
+
|
294 |
+
def activation_checkpointing_fn(self, module: nn.Module) -> bool:
|
295 |
+
return isinstance(module, MPTBlock)
|
296 |
+
|
297 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]:
|
298 |
+
if inputs_embeds is not None:
|
299 |
+
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
300 |
+
attention_mask = kwargs['attention_mask'].bool()
|
301 |
+
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
302 |
+
raise NotImplementedError('MPT does not support generation with right padding.')
|
303 |
+
if self.transformer.attn_uses_sequence_id and self.training:
|
304 |
+
sequence_id = torch.zeros_like(input_ids[:1])
|
305 |
+
else:
|
306 |
+
sequence_id = None
|
307 |
+
if past_key_values is not None:
|
308 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
309 |
+
if self.transformer.prefix_lm:
|
310 |
+
prefix_mask = torch.ones_like(attention_mask)
|
311 |
+
if kwargs.get('use_cache') == False:
|
312 |
+
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
313 |
+
else:
|
314 |
+
prefix_mask = None
|
315 |
+
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
|
316 |
+
|
317 |
+
@staticmethod
|
318 |
+
def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]:
|
319 |
+
"""Used by HuggingFace generate when using beam search with kv-caching.
|
320 |
+
|
321 |
+
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
322 |
+
for an example in transformers.
|
323 |
+
"""
|
324 |
+
reordered_past = []
|
325 |
+
for layer_past in past_key_values:
|
326 |
+
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
|
327 |
+
return reordered_past
|