hoanglongvn
commited on
Commit
·
a6d42dd
1
Parent(s):
3ab21f6
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1207.05 +/- 141.76
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd5cc7f2fa096701bc8cfbfd6656f9acc5b3e66bb642e59d719c3a62c56f991b
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd42a71fd30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd42a71fdc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd42a71fe50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd42a71fee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd42a71ff70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd42a723040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd42a7230d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd42a723160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd42a7231f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd42a723280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd42a723310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd42a7233a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd42a720ac0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679585191906282451,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC7T/z0K5Zq/HTt9vgczjz66F48/3m+FPtvhDb+icTa/l0+AvXOuHMCtpjC+O0tTwLyqRT4W7Uu/uUZKP+PAEb7wa6e+stVtP4chBD+imxe/eTatvjmHmL/byrA/9eiuPRgAor+Uv6A+Xy4JwILQeT89sx8+rW/Kv/sOe78mvXQ/F0cXvi1Urz8D+qK/l/qYvk9ETb++/08/ycAcPiUpBT+My9Q/FicfP1LRRj8sljQ8SjgsPyi4Tr9D+5u/hrg6Pkowgb+xN6M/iBFDPzvXAj9pRUo/lL+gPtzd7j5ZK4O/pKK+PRxZeL/vXos9d/EYvo/KBb9bQYg/OKuLv9eMmT41WHo/kq3PPnbON78HMKW/6VHlvh5iST9oKgE/UCvOP/NLsj+eBAc+0vC/PY/1kT9yZKu/3sNtvmxreT/CaoA/aUVKP5S/oD5fLgnAWSuDv9ifqD+wl/S/XCQSwLaTsr9flglAzR8iP8htkb3OJSk+cLmVP/m41T8+wLs/Guy3vQcQuz/IDk9AizoIv0AQs78qIf4+4PyRQF3LRz5qe88/A0hDvx78UkA28K0/I7lNvmlFSj+32EvAXy4JwILQeT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC19WS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh3wKPgAAAACpweS/AAAAALETVT0AAAAAf3X1PwAAAAAc0bm9AAAAAGAV4T8AAAAApuQPvgAAAAD6Mvq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkOcgtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIjuAb0AAAAA+MLuvwAAAADTnY29AAAAADXM4z8AAAAAYQHlvQAAAADW5/c/AAAAAH6jTr0AAAAAgE79vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE6uBzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAqY4y7AAAAAP023r8AAAAAYTC2PQAAAAC8vQBAAAAAAEux1j0AAAAAQb/ZPwAAAABW7do9AAAAAI0B8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACixqY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANjeHvQAAAADi9/e/AAAAAN+fqT0AAAAAKCzqPwAAAADufAE+AAAAAAuZ3T8AAAAAzFNnPQAAAACSqdu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJBFxyS3b22MAWyUTegDjAF0lEdAqUggtBfKIXV9lChoBkdAlJ2DHbRF7WgHTegDaAhHQKlJIGrS3LF1fZQoaAZHQJVJTcGkep5oB03oA2gIR0CpTgVgH/tIdX2UKGgGR0CVsWWRRuTBaAdN6ANoCEdAqU6enuRcNnV9lChoBkdAkuhkHY6GQGgHTegDaAhHQKlUB3ueBhB1fZQoaAZHQJX+dJGvwE1oB03oA2gIR0CpVNXJgb6ydX2UKGgGR0CMyuJkXk5qaAdN6ANoCEdAqVnXbEgnt3V9lChoBkdAk/NBJNCZ4WgHTegDaAhHQKlaZrX18LN1fZQoaAZHQJS35LJ0W/JoB03oA2gIR0CpYT3A/LTydX2UKGgGR0CS8ChEjPfLaAdN6ANoCEdAqWJ9d5Y5k3V9lChoBkdAlnsCay8jA2gHTegDaAhHQKlpI/20zCV1fZQoaAZHQJVPw7IT4+NoB03oA2gIR0CpabH0kGA1dX2UKGgGR0CVc2PmxMWXaAdN6ANoCEdAqW8+jIq9XnV9lChoBkdAe3PL1EmY0GgHTegDaAhHQKlwDIClrM11fZQoaAZHQJT6PnMdLg5oB03oA2gIR0CpdRK2BreqdX2UKGgGR0CUR63qiXY2aAdN6ANoCEdAqXWiWRigCnV9lChoBkdAjlPYgzP8h2gHTegDaAhHQKl7HI4EOiF1fZQoaAZHQJMON6LOzIFoB03oA2gIR0CpfFVtO2y+dX2UKGgGR0CVOHl8PWhAaAdN6ANoCEdAqYOtLWZqmHV9lChoBkdAkv6lOsT37GgHTegDaAhHQKmEkeWfK6p1fZQoaAZHQJOb6hSLqD9oB03oA2gIR0CpikSbH6uXdX2UKGgGR0CWDIswtapxaAdN6ANoCEdAqYsTZQHiWHV9lChoBkdAkF+6Rp1zQ2gHTegDaAhHQKmP69kjHGV1fZQoaAZHQJMDXcAR02doB03oA2gIR0CpkHgi3XqadX2UKGgGR0CU3KN83MpxaAdN6ANoCEdAqZXWgrYoRnV9lChoBkdAlZdrItDlYGgHTegDaAhHQKmWnjurp7l1fZQoaAZHQJMR0+KTB69oB03oA2gIR0CpnGv6be/IdX2UKGgGR0CT0+gdwNsnaAdN6ANoCEdAqZ02oWHk93V9lChoBkdAk+kYN3GGVWgHTegDaAhHQKmlHMNc4YJ1fZQoaAZHQJQ/uhlDneVoB03oA2gIR0CppeRfv4M4dX2UKGgGR0CSPBhVENONaAdN6ANoCEdAqaq3ocJdB3V9lChoBkdAlQsT0163RWgHTegDaAhHQKmrQDK5kLB1fZQoaAZHQJWSxgF5fMRoB03oA2gIR0CpsJc2rGR3dX2UKGgGR0CT9VQV9F4LaAdN6ANoCEdAqbFc1ZTya3V9lChoBkdAlDXOVs1sL2gHTegDaAhHQKm2Ur9VFQV1fZQoaAZHQJQ7RwR5C4VoB03oA2gIR0CptuIGpuMudX2UKGgGR0CK/RUAksz3aAdN6ANoCEdAqb51BppN9HV9lChoBkdAlJettIkJKWgHTegDaAhHQKm/uglF+d91fZQoaAZHQJRBg8A7xNJoB03oA2gIR0CpxbwY+B6KdX2UKGgGR0CUUakTpPhyaAdN6ANoCEdAqcZLB42S+3V9lChoBkdAklN5CjUNKGgHTegDaAhHQKnLy7jDKo11fZQoaAZHQJU63ivPkaNoB03oA2gIR0CpzJU5lvqDdX2UKGgGR0CUqRxk/bCaaAdN6ANoCEdAqdFsIzFdcHV9lChoBkdAlSmR5C4SYmgHTegDaAhHQKnR9ZyuIRB1fZQoaAZHQJSWM3xWkrRoB03oA2gIR0Cp15m5lOGkdX2UKGgGR0CUl8OearmyaAdN6ANoCEdAqdjBzaK1onV9lChoBkdAk77eGO+7DmgHTegDaAhHQKngYkrwvxp1fZQoaAZHQJP/9YMfA9FoB03oA2gIR0Cp4UBPTG5udX2UKGgGR0CUSKNBF/hEaAdN6ANoCEdAqebATXarWHV9lChoBkdAlbSmozeoDWgHTegDaAhHQKnnjAGjbi91fZQoaAZHQJLbEIOYplVoB03oA2gIR0Cp7JRbbDdhdX2UKGgGR0CVM/KsMiKSaAdN6ANoCEdAqe0phx5s03V9lChoBkdAkp5hzvJA+2gHTegDaAhHQKnyvNdqtYB1fZQoaAZHQJHmxkbxVhloB03oA2gIR0Cp85dR77bddX2UKGgGR0CTmoREnb7CaAdN6ANoCEdAqforBZZB9nV9lChoBkdAlWi6AvtdA2gHTegDaAhHQKn7DxwQ1791fZQoaAZHQJQh9KJ2t+1oB03oA2gIR0CqAj0Fjd56dX2UKGgGR0CTAfQ3xWkraAdN6ANoCEdAqgMSG+K0lnV9lChoBkdAlYN/iHZbp2gHTegDaAhHQKoIGsjmjj91fZQoaAZHQJaL/ySV4X5oB03oA2gIR0CqCLzMJQchdX2UKGgGR0CUSRck+otMaAdN6ANoCEdAqg4r7j1f3XV9lChoBkdAk94t9+gDimgHTegDaAhHQKoO/dxAB1d1fZQoaAZHQJTMS1YyO7xoB03oA2gIR0CqE/i1Z1V6dX2UKGgGR0CUprPszEaVaAdN6ANoCEdAqhTRLmITG3V9lChoBkdAle7diH6/I2gHTegDaAhHQKodNCojv/l1fZQoaAZHQJSUeX0Gu9xoB03oA2gIR0CqHoWxY7q6dX2UKGgGR0CMnzVHWjGlaAdN6ANoCEdAqiODS5RTCXV9lChoBkdAkX62FN+LFWgHTegDaAhHQKokFKA8Swp1fZQoaAZHQJRtru5SWJJoB03oA2gIR0CqKYP1ct5EdX2UKGgGR0CSTpyVObiIaAdN6ANoCEdAqipJ/CqIanV9lChoBkdAklPWq5sj3WgHTegDaAhHQKovV0+TvAp1fZQoaAZHQI/OjwYtQKtoB03oA2gIR0CqL+toSL62dX2UKGgGR0CVwFuWa+ewaAdN6ANoCEdAqjbnCEYfn3V9lChoBkdAkDHQ1ivxIGgHTegDaAhHQKo4Hzg/C691fZQoaAZHQJViWl67dzpoB03oA2gIR0CqPrVgx8D0dX2UKGgGR0CQ1fteUpuuaAdN6ANoCEdAqj9E9IPK+3V9lChoBkdAjKolCswL3WgHTegDaAhHQKpEzLeQ+2V1fZQoaAZHQJIJcKNQ0oBoB03oA2gIR0CqRZuAZsKtdX2UKGgGR0CTMoywOe8PaAdN6ANoCEdAqkqTlDF6zHV9lChoBkdAky2K6OHWSWgHTegDaAhHQKpLJPTodMl1fZQoaAZHQJE368yvcJtoB03oA2gIR0CqUIh4t6HCdX2UKGgGR0CSkewtapxWaAdN6ANoCEdAqlGL8pCrtHV9lChoBkdAky37EYO2A2gHTegDaAhHQKpY8xN7Bwd1fZQoaAZHQJR8O+L3sX1oB03oA2gIR0CqWdEsSTQmdX2UKGgGR0CTzkF+uvECaAdN6ANoCEdAql/n1ct5EHV9lChoBkdAkYDSB06o2mgHTegDaAhHQKpgu7zTWoZ1fZQoaAZHQJF1BUDMeOpoB03oA2gIR0CqZbjCYTkAdX2UKGgGR0CRhqWq94/vaAdN6ANoCEdAqmZHumaYu3V9lChoBkdAk0NH1nM+vGgHTegDaAhHQKprvzXBgu11fZQoaAZHQJWeaMrEtNBoB03oA2gIR0CqbI9GAkLQdX2UKGgGR0COeattALRbaAdN6ANoCEdAqnKRL7Gec3V9lChoBkdAj2s2qtHQQmgHTegDaAhHQKpzYj7ALzB1fZQoaAZHQJIDRnGsFMZoB03oA2gIR0CqexYzBRAKdX2UKGgGR0CQax6i0v4/aAdN6ANoCEdAqnvnPomoi3V9lChoBkdAkXGHbAUL2GgHTegDaAhHQKqA2bBGhEl1fZQoaAZHQIwpbjYI0IloB03oA2gIR0CqgWtqQA+7dX2UKGgGR0CTXTdxAB1caAdN6ANoCEdAqobIF3Y+S3V9lChoBkdAkd3uLehwl2gHTegDaAhHQKqHkmBOHnF1fZQoaAZHQJEZEuHvc8FoB03oA2gIR0CqjI76YVqOdX2UKGgGR0CN2mq2jO9naAdN6ANoCEdAqo0a8BdUsHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f75f6d3981d63da4d13deebd45a37233e648d9a20f4ef2dadf6dd4acbdd7033
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cabd8f81e2d0b8a8fd940679d988b01e3fbf81cd4affbc1ba36565c0666dd9aa
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd42a71fd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd42a71fdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd42a71fe50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd42a71fee0>", "_build": "<function ActorCriticPolicy._build at 0x7fd42a71ff70>", "forward": "<function ActorCriticPolicy.forward at 0x7fd42a723040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd42a7230d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd42a723160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd42a7231f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd42a723280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd42a723310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd42a7233a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd42a720ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679585191906282451, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC7T/z0K5Zq/HTt9vgczjz66F48/3m+FPtvhDb+icTa/l0+AvXOuHMCtpjC+O0tTwLyqRT4W7Uu/uUZKP+PAEb7wa6e+stVtP4chBD+imxe/eTatvjmHmL/byrA/9eiuPRgAor+Uv6A+Xy4JwILQeT89sx8+rW/Kv/sOe78mvXQ/F0cXvi1Urz8D+qK/l/qYvk9ETb++/08/ycAcPiUpBT+My9Q/FicfP1LRRj8sljQ8SjgsPyi4Tr9D+5u/hrg6Pkowgb+xN6M/iBFDPzvXAj9pRUo/lL+gPtzd7j5ZK4O/pKK+PRxZeL/vXos9d/EYvo/KBb9bQYg/OKuLv9eMmT41WHo/kq3PPnbON78HMKW/6VHlvh5iST9oKgE/UCvOP/NLsj+eBAc+0vC/PY/1kT9yZKu/3sNtvmxreT/CaoA/aUVKP5S/oD5fLgnAWSuDv9ifqD+wl/S/XCQSwLaTsr9flglAzR8iP8htkb3OJSk+cLmVP/m41T8+wLs/Guy3vQcQuz/IDk9AizoIv0AQs78qIf4+4PyRQF3LRz5qe88/A0hDvx78UkA28K0/I7lNvmlFSj+32EvAXy4JwILQeT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC19WS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh3wKPgAAAACpweS/AAAAALETVT0AAAAAf3X1PwAAAAAc0bm9AAAAAGAV4T8AAAAApuQPvgAAAAD6Mvq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkOcgtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIjuAb0AAAAA+MLuvwAAAADTnY29AAAAADXM4z8AAAAAYQHlvQAAAADW5/c/AAAAAH6jTr0AAAAAgE79vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE6uBzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAqY4y7AAAAAP023r8AAAAAYTC2PQAAAAC8vQBAAAAAAEux1j0AAAAAQb/ZPwAAAABW7do9AAAAAI0B8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACixqY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANjeHvQAAAADi9/e/AAAAAN+fqT0AAAAAKCzqPwAAAADufAE+AAAAAAuZ3T8AAAAAzFNnPQAAAACSqdu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJBFxyS3b22MAWyUTegDjAF0lEdAqUggtBfKIXV9lChoBkdAlJ2DHbRF7WgHTegDaAhHQKlJIGrS3LF1fZQoaAZHQJVJTcGkep5oB03oA2gIR0CpTgVgH/tIdX2UKGgGR0CVsWWRRuTBaAdN6ANoCEdAqU6enuRcNnV9lChoBkdAkuhkHY6GQGgHTegDaAhHQKlUB3ueBhB1fZQoaAZHQJX+dJGvwE1oB03oA2gIR0CpVNXJgb6ydX2UKGgGR0CMyuJkXk5qaAdN6ANoCEdAqVnXbEgnt3V9lChoBkdAk/NBJNCZ4WgHTegDaAhHQKlaZrX18LN1fZQoaAZHQJS35LJ0W/JoB03oA2gIR0CpYT3A/LTydX2UKGgGR0CS8ChEjPfLaAdN6ANoCEdAqWJ9d5Y5k3V9lChoBkdAlnsCay8jA2gHTegDaAhHQKlpI/20zCV1fZQoaAZHQJVPw7IT4+NoB03oA2gIR0CpabH0kGA1dX2UKGgGR0CVc2PmxMWXaAdN6ANoCEdAqW8+jIq9XnV9lChoBkdAe3PL1EmY0GgHTegDaAhHQKlwDIClrM11fZQoaAZHQJT6PnMdLg5oB03oA2gIR0CpdRK2BreqdX2UKGgGR0CUR63qiXY2aAdN6ANoCEdAqXWiWRigCnV9lChoBkdAjlPYgzP8h2gHTegDaAhHQKl7HI4EOiF1fZQoaAZHQJMON6LOzIFoB03oA2gIR0CpfFVtO2y+dX2UKGgGR0CVOHl8PWhAaAdN6ANoCEdAqYOtLWZqmHV9lChoBkdAkv6lOsT37GgHTegDaAhHQKmEkeWfK6p1fZQoaAZHQJOb6hSLqD9oB03oA2gIR0CpikSbH6uXdX2UKGgGR0CWDIswtapxaAdN6ANoCEdAqYsTZQHiWHV9lChoBkdAkF+6Rp1zQ2gHTegDaAhHQKmP69kjHGV1fZQoaAZHQJMDXcAR02doB03oA2gIR0CpkHgi3XqadX2UKGgGR0CU3KN83MpxaAdN6ANoCEdAqZXWgrYoRnV9lChoBkdAlZdrItDlYGgHTegDaAhHQKmWnjurp7l1fZQoaAZHQJMR0+KTB69oB03oA2gIR0CpnGv6be/IdX2UKGgGR0CT0+gdwNsnaAdN6ANoCEdAqZ02oWHk93V9lChoBkdAk+kYN3GGVWgHTegDaAhHQKmlHMNc4YJ1fZQoaAZHQJQ/uhlDneVoB03oA2gIR0CppeRfv4M4dX2UKGgGR0CSPBhVENONaAdN6ANoCEdAqaq3ocJdB3V9lChoBkdAlQsT0163RWgHTegDaAhHQKmrQDK5kLB1fZQoaAZHQJWSxgF5fMRoB03oA2gIR0CpsJc2rGR3dX2UKGgGR0CT9VQV9F4LaAdN6ANoCEdAqbFc1ZTya3V9lChoBkdAlDXOVs1sL2gHTegDaAhHQKm2Ur9VFQV1fZQoaAZHQJQ7RwR5C4VoB03oA2gIR0CptuIGpuMudX2UKGgGR0CK/RUAksz3aAdN6ANoCEdAqb51BppN9HV9lChoBkdAlJettIkJKWgHTegDaAhHQKm/uglF+d91fZQoaAZHQJRBg8A7xNJoB03oA2gIR0CpxbwY+B6KdX2UKGgGR0CUUakTpPhyaAdN6ANoCEdAqcZLB42S+3V9lChoBkdAklN5CjUNKGgHTegDaAhHQKnLy7jDKo11fZQoaAZHQJU63ivPkaNoB03oA2gIR0CpzJU5lvqDdX2UKGgGR0CUqRxk/bCaaAdN6ANoCEdAqdFsIzFdcHV9lChoBkdAlSmR5C4SYmgHTegDaAhHQKnR9ZyuIRB1fZQoaAZHQJSWM3xWkrRoB03oA2gIR0Cp15m5lOGkdX2UKGgGR0CUl8OearmyaAdN6ANoCEdAqdjBzaK1onV9lChoBkdAk77eGO+7DmgHTegDaAhHQKngYkrwvxp1fZQoaAZHQJP/9YMfA9FoB03oA2gIR0Cp4UBPTG5udX2UKGgGR0CUSKNBF/hEaAdN6ANoCEdAqebATXarWHV9lChoBkdAlbSmozeoDWgHTegDaAhHQKnnjAGjbi91fZQoaAZHQJLbEIOYplVoB03oA2gIR0Cp7JRbbDdhdX2UKGgGR0CVM/KsMiKSaAdN6ANoCEdAqe0phx5s03V9lChoBkdAkp5hzvJA+2gHTegDaAhHQKnyvNdqtYB1fZQoaAZHQJHmxkbxVhloB03oA2gIR0Cp85dR77bddX2UKGgGR0CTmoREnb7CaAdN6ANoCEdAqforBZZB9nV9lChoBkdAlWi6AvtdA2gHTegDaAhHQKn7DxwQ1791fZQoaAZHQJQh9KJ2t+1oB03oA2gIR0CqAj0Fjd56dX2UKGgGR0CTAfQ3xWkraAdN6ANoCEdAqgMSG+K0lnV9lChoBkdAlYN/iHZbp2gHTegDaAhHQKoIGsjmjj91fZQoaAZHQJaL/ySV4X5oB03oA2gIR0CqCLzMJQchdX2UKGgGR0CUSRck+otMaAdN6ANoCEdAqg4r7j1f3XV9lChoBkdAk94t9+gDimgHTegDaAhHQKoO/dxAB1d1fZQoaAZHQJTMS1YyO7xoB03oA2gIR0CqE/i1Z1V6dX2UKGgGR0CUprPszEaVaAdN6ANoCEdAqhTRLmITG3V9lChoBkdAle7diH6/I2gHTegDaAhHQKodNCojv/l1fZQoaAZHQJSUeX0Gu9xoB03oA2gIR0CqHoWxY7q6dX2UKGgGR0CMnzVHWjGlaAdN6ANoCEdAqiODS5RTCXV9lChoBkdAkX62FN+LFWgHTegDaAhHQKokFKA8Swp1fZQoaAZHQJRtru5SWJJoB03oA2gIR0CqKYP1ct5EdX2UKGgGR0CSTpyVObiIaAdN6ANoCEdAqipJ/CqIanV9lChoBkdAklPWq5sj3WgHTegDaAhHQKovV0+TvAp1fZQoaAZHQI/OjwYtQKtoB03oA2gIR0CqL+toSL62dX2UKGgGR0CVwFuWa+ewaAdN6ANoCEdAqjbnCEYfn3V9lChoBkdAkDHQ1ivxIGgHTegDaAhHQKo4Hzg/C691fZQoaAZHQJViWl67dzpoB03oA2gIR0CqPrVgx8D0dX2UKGgGR0CQ1fteUpuuaAdN6ANoCEdAqj9E9IPK+3V9lChoBkdAjKolCswL3WgHTegDaAhHQKpEzLeQ+2V1fZQoaAZHQJIJcKNQ0oBoB03oA2gIR0CqRZuAZsKtdX2UKGgGR0CTMoywOe8PaAdN6ANoCEdAqkqTlDF6zHV9lChoBkdAky2K6OHWSWgHTegDaAhHQKpLJPTodMl1fZQoaAZHQJE368yvcJtoB03oA2gIR0CqUIh4t6HCdX2UKGgGR0CSkewtapxWaAdN6ANoCEdAqlGL8pCrtHV9lChoBkdAky37EYO2A2gHTegDaAhHQKpY8xN7Bwd1fZQoaAZHQJR8O+L3sX1oB03oA2gIR0CqWdEsSTQmdX2UKGgGR0CTzkF+uvECaAdN6ANoCEdAql/n1ct5EHV9lChoBkdAkYDSB06o2mgHTegDaAhHQKpgu7zTWoZ1fZQoaAZHQJF1BUDMeOpoB03oA2gIR0CqZbjCYTkAdX2UKGgGR0CRhqWq94/vaAdN6ANoCEdAqmZHumaYu3V9lChoBkdAk0NH1nM+vGgHTegDaAhHQKprvzXBgu11fZQoaAZHQJWeaMrEtNBoB03oA2gIR0CqbI9GAkLQdX2UKGgGR0COeattALRbaAdN6ANoCEdAqnKRL7Gec3V9lChoBkdAj2s2qtHQQmgHTegDaAhHQKpzYj7ALzB1fZQoaAZHQJIDRnGsFMZoB03oA2gIR0CqexYzBRAKdX2UKGgGR0CQax6i0v4/aAdN6ANoCEdAqnvnPomoi3V9lChoBkdAkXGHbAUL2GgHTegDaAhHQKqA2bBGhEl1fZQoaAZHQIwpbjYI0IloB03oA2gIR0CqgWtqQA+7dX2UKGgGR0CTXTdxAB1caAdN6ANoCEdAqobIF3Y+S3V9lChoBkdAkd3uLehwl2gHTegDaAhHQKqHkmBOHnF1fZQoaAZHQJEZEuHvc8FoB03oA2gIR0CqjI76YVqOdX2UKGgGR0CN2mq2jO9naAdN6ANoCEdAqo0a8BdUsHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:469711b213689d2579add4683b2452967ff9b0832ab5ce151baf0a21dafa7fa7
|
3 |
+
size 1043931
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1207.0478331314748, "std_reward": 141.76407491730862, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-23T16:25:25.983730"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e441879c86c81df62a53c66faa4bc11d585540d9dc8e0e8c96daa486c3868c74
|
3 |
+
size 2136
|