hmnselftaught
commited on
Commit
·
f329e99
1
Parent(s):
a568494
Initial model v0
Browse files- README.md +37 -0
- agent_v0.zip +3 -0
- agent_v0/_stable_baselines3_version +1 -0
- agent_v0/data +95 -0
- agent_v0/policy.optimizer.pth +3 -0
- agent_v0/policy.pth +3 -0
- agent_v0/pytorch_variables.pth +3 -0
- agent_v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 240.12 +/- 49.96
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
agent_v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:303b36d8b6bf9a580f717c7ca17778c6be0165b3fddf40dcb60e7a80e3aa7319
|
3 |
+
size 150428
|
agent_v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
agent_v0/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f89afd5c700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f89afd5c790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f89afd5c820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f89afd5c8b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f89afd5c940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f89afd5c9d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f89afd5ca60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f89afd5caf0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f89afd5cb80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f89afd5cc10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f89afd5cca0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f89afd5cd30>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f89afd584e0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAqGY7o8n73arwiRW0F40078VtlnBI0M/LWlK1Idm7CJ3wtV3vQTT0KvSqhz5B1kMCVggFYR6SsqRId7zLEqZ1vbOrCcx/lhgFE7/rK33K8m3/7Fa+yxLA+21V2pRULH9ywl8CWSZxZELMABOnO1VP8ITgOD/RsmyfzF12JCfVIS7SaK2i807YPZgPOpIX3o1r4UE3Z7533IMXFO+W8SdFRzLbVcLjreccEo6RXPqmE+7FSWyLfeLBMbfUIoiIRYrcsSEC5h6OGxxuALgJsigZt0uo/i1Huo18JhPVkT3HqNli+AAP1piJa3FUIhKrvsjonh7dNKuCE2kGORyRsrSADx2lx2DG47Y35TYYmSpXatxIKcexEgdqE1ag9ToiWG3nvB5auS9rRffeRVAgJKxjNq5IvFLAFBsyGXPjprWj87l4/Tu+jGl0uick8NmlhyPxrBQxoOYdjl99eVWK9re7Nrk10IuJY2YWvmOVaYqinEX3EgJ0ynKPi+uBMJ7jYFFpQk1ejIs5fKaYYF+5su4MgWEW5qw0t24w7hQCBnHbIFxp6/XMQuuKDrIIjDOpFt0jLJ7EkIY324LiSOq3S7zxyumbKe4GqDtCifX12Hw0+iOEAPYykNjT6RE7hlwp4iQuxO0z2+6sDY5AvEefePhWBNV9duR7L7MQxlKdjijMH6McllriSd+qideaOlPYQcp+oTRm/m8Kiqqer1i/o1Dy7qXdAbcJYanaVsKIJcHs/Vy5jWz2k96OrD5I4hdA47HXAavFdXElpcyrgQbsm7AAjBlLv6Un4tHQW9sv2YOo8cz1QuTNMw34032f7nM533DfeMZVDbEaATDa3m4BWPly4b//Ex8X04MX5QC5zImaI4vT7vYwVK8pAfgqNnsds+wlOnzdAjAAgUTCVG3Nz9GBeu3/lAdhSZObOWES0LbWv7UhfZowALapAQ9XzF0oF4Xm0a2xBNhCiaj79pAhQ0CW2cD/WHAuJJrChrYQieubkaZSEeK9Mb/RjCFvm7+DQK4XW+mt4NClQ6vffZ4b2gI9JF32CFdG/XDJbktnvv6BezkZzkl0TkWeTpn5YCjKTijHBUNsQmu0gJ4G75n2zMj4Q9I6b46PmTE/moOBy1/ST65zTSFeWVJWefq7kt2i8f1RAVWOowHhMTIcSF7uRKVyF2fB0T0H1uZPP20HKKKYDetGPs2Uo9MYRFlgibSdjUizC/x7RrcqcuKWyasAiDjo0KL/ScXOMex4TS0P4PzGGkootidR0XghS61V39SdawP24qm6ndtOkxk5OeF7g+HnRCcVxpgj4HreSj9hWdAwljIEfQs30Ym9ZdOdJwFRdthGgNlhMJ4hZxnK29RqjEt+TKdn12lw02WW6fDduHZUS4j77q3HX53lhhxE133d5dE0G6+BZD6n4TFL8Hh7T5mn28tPl73tGE4sQPhQ9Des3i2X3Jsnif41aScrvFZ35E3MVVWuh+Gel1rGvIy6zJ6yarfUYjiAQoKSBXIGdxbSS9b1o5z10RuntohFyJDjCLv6gHvB6VbExVMSm/f5TeWrhD/JiC2m0nEXgUpOBc7FgnBsRD+Ruz9HL73TvIkbzGgS9vc4t/AV8aAtiRPHrezjQJR3xiMWLDPGQRAB/jiX0JLG+/z/rRamZiFQnn0Rj/r2VxZVBe4Ev0X62YbUu1gQQ9fyZhOzzF7rLPHzc/aBJW7gCiV4gBE/07+Zx8EhzmV4XwHsAiIXVioDt9VUPH7Qli1SnFynnsw/mzx7N99WafY4UiRKYN444zDcnApJ/U9Vtkb9x6evoprj+NaRH4MgGxbkAT+T8YAxm/A2lUEUYvgCo1klvN+G4nL74HqOEMxKH2HwUtAz8hpFkZKxOGAjPUDm/3Lckm2sISoRWlnELeJXogrtx91XPJGYhAlWU2pjuvZBHo/QQX27BP7OferGzhnyECc+scEvf8Be7iuV0DCUb2dXjYc+7EtpkS2NfEVIhA+jv0C5kIAdqNDEkYh4Yvs470RHxIiAEc/NHuuSywB8MnlCmmXFIIoJrUa5NBGGOMzuOKwQARo1RliuczvMYDYDlTkj0fzU3OnY+Pngnr+toJbc2JC6+N4P24Y/e9Ld0nDo4TyTKQxaKBeazIu57yaE5kh0lmkYFbaMElG+QMNOGKocGHsACDiCtZJGksSq+jeNTj+7AL/Y0hk8BVnM03QLFYetYrlHBfdZWUA7vkc+jvcds9b0FfRdjmG7mKPj4qtcvgWKsrkqLsOaPlJpFgwrkecysyzPvP8k6wZarR24t1iX932oH6PjPnc9pXy9TFIkqiKn3dur7clWZLm3je3kdpKJVEW3qK2awN51LNXlQJOX6YHI19GYPoiYmRlnRewphpBSGHWVXE6kJ9Y2vn0zSBr/28XupXUtLI2S4cfgcrOXrubM5Hv6XFDQX0skCpkTI3FqxEn7uhCCOi7rm/djHPmuW6t4IBQy/IzHzMv083QwPr+wXTkctb8eoRi1x9E+3jrqtoGLMnuU+2pHMNguPm0jOUkdFq+ZLTurFWX7T9YPIpGX35o1Qv0j/pwSfHQs5bzV84pojJJfrB9C313W7NSniJ2p/jrAkq6nnBelL5V86ajy1z6TV8bldZvALSCe0o7/urKrBbf5gDTDM3Vzw4f0pKHZYRLoOVFfrIL//SXpdsed9WAYSXv6UydWFQsgU7KdUxemtwGd3d7x6AdvQHAigSUK3DfJVnkd/v2uqknrD26ibn9h+KVAmJqeRt0FlQPmSOxGvCGu4tpm6DBwR1p4KsGEjJ00K7FUALvhZQt/+1eMu7ZTmX8sK2CKYcYm5lHA5IG2pBHAycPhiuAfV4J5/8m6GVqb1SwhzMG8uxWTGODj30i0vEw0eW8VETt7WBF6k2A6sn8ZC9jkudhjIoLv1ErXp5CKI0V9geobya7DRC3IX7KEkbx1gIsJsS0Y1jn741dsfSdinRIUycmWRxXbaEsLv5c2UrI23jKXov648P9sM+zKCbp6rISJPDeni8Qb6OJ5mE4sZfYSCawm9QRmcpcSyzWt+Jboa/dd6Q27YZijcjEfe9V1LyYxk8TGujzeQrwO1WEP8UvIboJOniS7pG0Bsun48U4UHgSTSvijlpVwieQYGz8uApZCX3kjU2Nv1ygGoUhRNIY7cQ1fiezwG/tgwWVVk9C0ZevTNYPDi1aavMYMFbWPYOIEDw65UfYn3QKVHaWakVWa6ZlH+0TuU0mtaeKLdOo/qUxGNM1qS66RrY9JDj5VhulJmVzFfDHUUY3aAMn10G/5ePcZl+hrsH9YJQy7BtagjaN0jHWgpzTuYmUcMvGGw3WwlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLFHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 1000448,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673666855079198457,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKb1yj2+csk+ohfYvHRGYr718A49UAg6PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDCHn/X9dcECUhpRSlIwBbJRNGAGMAXSUR0ChrXq20AtGdX2UKGgGaAloD0MIdOygEtcrb0CUhpRSlGgVTT4BaBZHQKGuiHD76551fZQoaAZoCWgPQwgawFsggZNxQJSGlFKUaBVNWAFoFkdAoa+zWuoxYnV9lChoBmgJaA9DCARVo1fDzHBAlIaUUpRoFU19AWgWR0Chsa9Gy5ZsdX2UKGgGaAloD0MIxCYycwHKbECUhpRSlGgVTW8BaBZHQKGy8RJVbRp1fZQoaAZoCWgPQwieJjPe1p5vQJSGlFKUaBVNXQFoFkdAobQX9rGipXV9lChoBmgJaA9DCOl/uRYtHG1AlIaUUpRoFU0pAWgWR0ChtbkTxoZidX2UKGgGaAloD0MIViqoqHq+bECUhpRSlGgVTWoBaBZHQKG3DvRZ2ZB1fZQoaAZoCWgPQwg730+N1wxyQJSGlFKUaBVNUwJoFkdAobkmD6Fds3V9lChoBmgJaA9DCFjnGJC9FG9AlIaUUpRoFU2CAWgWR0ChuxcVxjridX2UKGgGaAloD0MI38FPHEDFWECUhpRSlGgVTegDaBZHQKG/sVJtix51fZQoaAZoCWgPQwgw9fOmIsFtQJSGlFKUaBVNXAFoFkdAocDjL0SRKnV9lChoBmgJaA9DCJkNMslIpG9AlIaUUpRoFU08AWgWR0Chwf7mEGqxdX2UKGgGaAloD0MIsVJBRdWHKkCUhpRSlGgVTQ0BaBZHQKHDglDWsil1fZQoaAZoCWgPQwiN8PYghMpvQJSGlFKUaBVNSQFoFkdAocSGbAk9lnV9lChoBmgJaA9DCHnL1Y/NwXBAlIaUUpRoFU1lAWgWR0ChxbF7dBSldX2UKGgGaAloD0MIscOY9PfKbECUhpRSlGgVTVkBaBZHQKHHhwmVqvh1fZQoaAZoCWgPQwgIym37XkJwQJSGlFKUaBVNdwFoFkdAocjZxLkCFXV9lChoBmgJaA9DCKSJd4Anym9AlIaUUpRoFU2TAWgWR0ChyuMMRYigdX2UKGgGaAloD0MIpYXLKqzicECUhpRSlGgVTSUBaBZHQKHL5nV5KOF1fZQoaAZoCWgPQwiy1eWUgPdqQJSGlFKUaBVNVQFoFkdAoc0F1B+nZXV9lChoBmgJaA9DCGXequvQ4W9AlIaUUpRoFU1yAWgWR0ChzvU4aP0adX2UKGgGaAloD0MIoblOIy04bECUhpRSlGgVTVIBaBZHQKHQMS+QEIR1fZQoaAZoCWgPQwh3hqktdZhwQJSGlFKUaBVNjQFoFkdAodGG3H7xeHV9lChoBmgJaA9DCHXLDvEPdW9AlIaUUpRoFU14AWgWR0Ch03TfrKNidX2UKGgGaAloD0MIAYblzzeybkCUhpRSlGgVTYcBaBZHQKHUzYU34sV1fZQoaAZoCWgPQwhmguFcwxptQJSGlFKUaBVNcAFoFkdAodYh1klNUXV9lChoBmgJaA9DCD4/jBAea21AlIaUUpRoFU1SAWgWR0Ch19y44Ia+dX2UKGgGaAloD0MIt88qM6XpcUCUhpRSlGgVTYQBaBZHQKHZKL2HtWx1fZQoaAZoCWgPQwielbTi20hwQJSGlFKUaBVNogFoFkdAodqhEa2nbnV9lChoBmgJaA9DCFIq4Qm9+29AlIaUUpRoFU1rAWgWR0Ch3KbSZ0CBdX2UKGgGaAloD0MIrW2Kx8Xxb0CUhpRSlGgVTd8BaBZHQKHeT2vjfel1fZQoaAZoCWgPQwj3yycrhqxvQJSGlFKUaBVNTAFoFkdAoeAT3qRlpXV9lChoBmgJaA9DCCmvldBdPGxAlIaUUpRoFU08AWgWR0Ch4SJZfUnYdX2UKGgGaAloD0MIBADHnj3XV0CUhpRSlGgVTegDaBZHQKHl0Qo1DSh1fZQoaAZoCWgPQwiH3uLhPbxwQJSGlFKUaBVNLgFoFkdAoebM8PnSv3V9lChoBmgJaA9DCFMj9DN1lG9AlIaUUpRoFU1AAWgWR0Ch5+nTI/7jdX2UKGgGaAloD0MIRu7p6g55YUCUhpRSlGgVTegDaBZHQKHsUoLofSx1fZQoaAZoCWgPQwgShgFL7idwQJSGlFKUaBVNYQFoFkdAoe5BxT850nV9lChoBmgJaA9DCK/MW3WdW2BAlIaUUpRoFU3oA2gWR0Ch8391MdtEdX2UKGgGaAloD0MInYL8bGTobECUhpRSlGgVTWkBaBZHQKH0xpZfUnZ1fZQoaAZoCWgPQwjdBrXf2o1sQJSGlFKUaBVNYgFoFkdAofX74SHuZ3V9lChoBmgJaA9DCKsi3GTUEW5AlIaUUpRoFU1PAWgWR0Ch99VAAyVOdX2UKGgGaAloD0MIZoLhXEN7b0CUhpRSlGgVTWYBaBZHQKH5Bp/wy7B1fZQoaAZoCWgPQwjBc+/hkkhsQJSGlFKUaBVNfAFoFkdAofsBPTG5tnV9lChoBmgJaA9DCEzChTwCmXBAlIaUUpRoFU16AWgWR0Ch/Guz6ab4dX2UKGgGaAloD0MIcy7FVSVxcECUhpRSlGgVTU0BaBZHQKH9iJqIrOJ1fZQoaAZoCWgPQwhLy0i9J2RvQJSGlFKUaBVNXAFoFkdAof9IY1pCbHV9lChoBmgJaA9DCLnDJjLzVXFAlIaUUpRoFU0qAWgWR0CiAEqoqCpWdX2UKGgGaAloD0MIlIlbBTHgbkCUhpRSlGgVTV8BaBZHQKIBkhew9q11fZQoaAZoCWgPQwhQG9XpABlwQJSGlFKUaBVNcgFoFkdAogNzJhfBvnV9lChoBmgJaA9DCCbfbHPjuG1AlIaUUpRoFU1ZAWgWR0CiBLGcnVoYdX2UKGgGaAloD0MIl299WO+Zb0CUhpRSlGgVTXABaBZHQKIF9PAwfyR1fZQoaAZoCWgPQwh23sZmRwxyQJSGlFKUaBVNZAFoFkdAogfrTOPeYXV9lChoBmgJaA9DCIkoJm+AG21AlIaUUpRoFU1EAWgWR0CiCSIWxhUjdX2UKGgGaAloD0MIDmYTYBgkcECUhpRSlGgVTYIBaBZHQKIKeSowVTJ1fZQoaAZoCWgPQwjdC8wKRfxtQJSGlFKUaBVNRgFoFkdAogxI2Ifr8nV9lChoBmgJaA9DCErwhjSqfm1AlIaUUpRoFU1FAWgWR0CiDWjwpe/pdX2UKGgGaAloD0MI1v85zJdJb0CUhpRSlGgVTUABaBZHQKIOe8cMmWt1fZQoaAZoCWgPQwjvAiUF1gpwQJSGlFKUaBVNhAFoFkdAohB0TcqOLnV9lChoBmgJaA9DCDo978aChnFAlIaUUpRoFU1iAWgWR0CiEZ1GLDQ7dX2UKGgGaAloD0MIhKCjVa1gcECUhpRSlGgVTXkBaBZHQKIS69A5aNd1fZQoaAZoCWgPQwhF8pVAytxwQJSGlFKUaBVNuwNoFkdAohbMG5c1O3V9lChoBmgJaA9DCLadtkaE0m1AlIaUUpRoFU09AWgWR0CiGI8fvF3qdX2UKGgGaAloD0MIVwVqMXgPXUCUhpRSlGgVTegDaBZHQKIdR1s+FDh1fZQoaAZoCWgPQwjToj7JHcNtQJSGlFKUaBVNiQFoFkdAoh7EkQf6oHV9lChoBmgJaA9DCDlgV5Pn1XBAlIaUUpRoFU2+AWgWR0CiIG4bKifydX2UKGgGaAloD0MIOutTjslvbECUhpRSlGgVTTsBaBZHQKIiL9itq591fZQoaAZoCWgPQwjajNMQFWdwQJSGlFKUaBVNPwFoFkdAoiMxZSvTw3V9lChoBmgJaA9DCIqsNZTaaytAlIaUUpRoFUvSaBZHQKIj00OVgQZ1fZQoaAZoCWgPQwjKh6BqNCZwQJSGlFKUaBVNaAFoFkdAoiW6XBxgiXV9lChoBmgJaA9DCGGInL5em3BAlIaUUpRoFU1PAWgWR0CiJuyaEzwddX2UKGgGaAloD0MIQ8ajVEJBckCUhpRSlGgVTUYBaBZHQKIn+/XXiBJ1fZQoaAZoCWgPQwiv6xfshgZwQJSGlFKUaBVNegFoFkdAoiny3iJfpnV9lChoBmgJaA9DCLmLMEW5nktAlIaUUpRoFUvwaBZHQKIqtNucc2l1fZQoaAZoCWgPQwg+sOO/QLlvQJSGlFKUaBVNVQFoFkdAoiv0qSX+l3V9lChoBmgJaA9DCMWQnEzcM2xAlIaUUpRoFU1rAWgWR0CiLTzqrzXjdX2UKGgGaAloD0MIX7Uy4RfKbkCUhpRSlGgVTWUBaBZHQKIvKhBZ6ld1fZQoaAZoCWgPQwhSD9HoDthuQJSGlFKUaBVNQwFoFkdAojBBLkCFK3V9lChoBmgJaA9DCMWRByILgm5AlIaUUpRoFU1qAWgWR0CiMkL2QGOddX2UKGgGaAloD0MIqKs7FlsAb0CUhpRSlGgVTaUBaBZHQKIzzpX6qKh1fZQoaAZoCWgPQwgU56ijIzhyQJSGlFKUaBVNPgFoFkdAojTNjd56dHV9lChoBmgJaA9DCJIE4Qoot21AlIaUUpRoFU1XAWgWR0CiNrQ97ngYdX2UKGgGaAloD0MIvJaQDzqacUCUhpRSlGgVTSsBaBZHQKI3nlA/s3R1fZQoaAZoCWgPQwhBCwkY3ZNwQJSGlFKUaBVNWgFoFkdAojjarWAf+3V9lChoBmgJaA9DCJNWfEMhuHBAlIaUUpRoFU0SAWgWR0CiOboTfzjFdX2UKGgGaAloD0MI/+cwX16raUCUhpRSlGgVTZMBaBZHQKI7vy+YdAB1fZQoaAZoCWgPQwiSdqOP+RA/QJSGlFKUaBVNEAFoFkdAojyZJd0JW3V9lChoBmgJaA9DCAJ+jSTBhXFAlIaUUpRoFU1ZAWgWR0CiPbRQBPsSdX2UKGgGaAloD0MI/BnerMELXUCUhpRSlGgVTegDaBZHQKJCglUp/gB1fZQoaAZoCWgPQwjn/upx36JwQJSGlFKUaBVNFwFoFkdAokQWKTB68nV9lChoBmgJaA9DCFeyYyMQ4W9AlIaUUpRoFU1VAWgWR0CiRVAuyu6mdX2UKGgGaAloD0MIOGkaFM3qb0CUhpRSlGgVTUUBaBZHQKJGhNu+AVh1fZQoaAZoCWgPQwh2jZYDPe5uQJSGlFKUaBVNVQFoFkdAokhV0o0ALnV9lChoBmgJaA9DCFRU/UrnnW9AlIaUUpRoFU1PAWgWR0CiSXLMTviMdX2UKGgGaAloD0MIWixF8lX6cECUhpRSlGgVTVIBaBZHQKJKjDjzZpV1fZQoaAZoCWgPQwjiyW5mdGpuQJSGlFKUaBVNaAFoFkdAokxnKW9lE3V9lChoBmgJaA9DCC82rRQC/2VAlIaUUpRoFU3oA2gWR0CiUP0/GEPEdX2UKGgGaAloD0MI0a+tn/5WbUCUhpRSlGgVTVwBaBZHQKJSHfdAPd51fZQoaAZoCWgPQwhz2lNyzhJvQJSGlFKUaBVNMQFoFkdAolMbCiyprHVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 3908,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
agent_v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb57af40c603ddd9ee8f6ca76767e4ad9cbd9388ff4a18a3186586f71138b88b
|
3 |
+
size 87929
|
agent_v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3059bf36fd05c40f33cfaa5bbd380efc7a465ce2d114a8385278289a695a2e45
|
3 |
+
size 43393
|
agent_v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
agent_v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f89afd5c700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f89afd5c790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f89afd5c820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f89afd5c8b0>", "_build": "<function ActorCriticPolicy._build at 0x7f89afd5c940>", "forward": "<function ActorCriticPolicy.forward at 0x7f89afd5c9d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f89afd5ca60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f89afd5caf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f89afd5cb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f89afd5cc10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f89afd5cca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f89afd5cd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f89afd584e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAqGY7o8n73arwiRW0F40078VtlnBI0M/LWlK1Idm7CJ3wtV3vQTT0KvSqhz5B1kMCVggFYR6SsqRId7zLEqZ1vbOrCcx/lhgFE7/rK33K8m3/7Fa+yxLA+21V2pRULH9ywl8CWSZxZELMABOnO1VP8ITgOD/RsmyfzF12JCfVIS7SaK2i807YPZgPOpIX3o1r4UE3Z7533IMXFO+W8SdFRzLbVcLjreccEo6RXPqmE+7FSWyLfeLBMbfUIoiIRYrcsSEC5h6OGxxuALgJsigZt0uo/i1Huo18JhPVkT3HqNli+AAP1piJa3FUIhKrvsjonh7dNKuCE2kGORyRsrSADx2lx2DG47Y35TYYmSpXatxIKcexEgdqE1ag9ToiWG3nvB5auS9rRffeRVAgJKxjNq5IvFLAFBsyGXPjprWj87l4/Tu+jGl0uick8NmlhyPxrBQxoOYdjl99eVWK9re7Nrk10IuJY2YWvmOVaYqinEX3EgJ0ynKPi+uBMJ7jYFFpQk1ejIs5fKaYYF+5su4MgWEW5qw0t24w7hQCBnHbIFxp6/XMQuuKDrIIjDOpFt0jLJ7EkIY324LiSOq3S7zxyumbKe4GqDtCifX12Hw0+iOEAPYykNjT6RE7hlwp4iQuxO0z2+6sDY5AvEefePhWBNV9duR7L7MQxlKdjijMH6McllriSd+qideaOlPYQcp+oTRm/m8Kiqqer1i/o1Dy7qXdAbcJYanaVsKIJcHs/Vy5jWz2k96OrD5I4hdA47HXAavFdXElpcyrgQbsm7AAjBlLv6Un4tHQW9sv2YOo8cz1QuTNMw34032f7nM533DfeMZVDbEaATDa3m4BWPly4b//Ex8X04MX5QC5zImaI4vT7vYwVK8pAfgqNnsds+wlOnzdAjAAgUTCVG3Nz9GBeu3/lAdhSZObOWES0LbWv7UhfZowALapAQ9XzF0oF4Xm0a2xBNhCiaj79pAhQ0CW2cD/WHAuJJrChrYQieubkaZSEeK9Mb/RjCFvm7+DQK4XW+mt4NClQ6vffZ4b2gI9JF32CFdG/XDJbktnvv6BezkZzkl0TkWeTpn5YCjKTijHBUNsQmu0gJ4G75n2zMj4Q9I6b46PmTE/moOBy1/ST65zTSFeWVJWefq7kt2i8f1RAVWOowHhMTIcSF7uRKVyF2fB0T0H1uZPP20HKKKYDetGPs2Uo9MYRFlgibSdjUizC/x7RrcqcuKWyasAiDjo0KL/ScXOMex4TS0P4PzGGkootidR0XghS61V39SdawP24qm6ndtOkxk5OeF7g+HnRCcVxpgj4HreSj9hWdAwljIEfQs30Ym9ZdOdJwFRdthGgNlhMJ4hZxnK29RqjEt+TKdn12lw02WW6fDduHZUS4j77q3HX53lhhxE133d5dE0G6+BZD6n4TFL8Hh7T5mn28tPl73tGE4sQPhQ9Des3i2X3Jsnif41aScrvFZ35E3MVVWuh+Gel1rGvIy6zJ6yarfUYjiAQoKSBXIGdxbSS9b1o5z10RuntohFyJDjCLv6gHvB6VbExVMSm/f5TeWrhD/JiC2m0nEXgUpOBc7FgnBsRD+Ruz9HL73TvIkbzGgS9vc4t/AV8aAtiRPHrezjQJR3xiMWLDPGQRAB/jiX0JLG+/z/rRamZiFQnn0Rj/r2VxZVBe4Ev0X62YbUu1gQQ9fyZhOzzF7rLPHzc/aBJW7gCiV4gBE/07+Zx8EhzmV4XwHsAiIXVioDt9VUPH7Qli1SnFynnsw/mzx7N99WafY4UiRKYN444zDcnApJ/U9Vtkb9x6evoprj+NaRH4MgGxbkAT+T8YAxm/A2lUEUYvgCo1klvN+G4nL74HqOEMxKH2HwUtAz8hpFkZKxOGAjPUDm/3Lckm2sISoRWlnELeJXogrtx91XPJGYhAlWU2pjuvZBHo/QQX27BP7OferGzhnyECc+scEvf8Be7iuV0DCUb2dXjYc+7EtpkS2NfEVIhA+jv0C5kIAdqNDEkYh4Yvs470RHxIiAEc/NHuuSywB8MnlCmmXFIIoJrUa5NBGGOMzuOKwQARo1RliuczvMYDYDlTkj0fzU3OnY+Pngnr+toJbc2JC6+N4P24Y/e9Ld0nDo4TyTKQxaKBeazIu57yaE5kh0lmkYFbaMElG+QMNOGKocGHsACDiCtZJGksSq+jeNTj+7AL/Y0hk8BVnM03QLFYetYrlHBfdZWUA7vkc+jvcds9b0FfRdjmG7mKPj4qtcvgWKsrkqLsOaPlJpFgwrkecysyzPvP8k6wZarR24t1iX932oH6PjPnc9pXy9TFIkqiKn3dur7clWZLm3je3kdpKJVEW3qK2awN51LNXlQJOX6YHI19GYPoiYmRlnRewphpBSGHWVXE6kJ9Y2vn0zSBr/28XupXUtLI2S4cfgcrOXrubM5Hv6XFDQX0skCpkTI3FqxEn7uhCCOi7rm/djHPmuW6t4IBQy/IzHzMv083QwPr+wXTkctb8eoRi1x9E+3jrqtoGLMnuU+2pHMNguPm0jOUkdFq+ZLTurFWX7T9YPIpGX35o1Qv0j/pwSfHQs5bzV84pojJJfrB9C313W7NSniJ2p/jrAkq6nnBelL5V86ajy1z6TV8bldZvALSCe0o7/urKrBbf5gDTDM3Vzw4f0pKHZYRLoOVFfrIL//SXpdsed9WAYSXv6UydWFQsgU7KdUxemtwGd3d7x6AdvQHAigSUK3DfJVnkd/v2uqknrD26ibn9h+KVAmJqeRt0FlQPmSOxGvCGu4tpm6DBwR1p4KsGEjJ00K7FUALvhZQt/+1eMu7ZTmX8sK2CKYcYm5lHA5IG2pBHAycPhiuAfV4J5/8m6GVqb1SwhzMG8uxWTGODj30i0vEw0eW8VETt7WBF6k2A6sn8ZC9jkudhjIoLv1ErXp5CKI0V9geobya7DRC3IX7KEkbx1gIsJsS0Y1jn741dsfSdinRIUycmWRxXbaEsLv5c2UrI23jKXov648P9sM+zKCbp6rISJPDeni8Qb6OJ5mE4sZfYSCawm9QRmcpcSyzWt+Jboa/dd6Q27YZijcjEfe9V1LyYxk8TGujzeQrwO1WEP8UvIboJOniS7pG0Bsun48U4UHgSTSvijlpVwieQYGz8uApZCX3kjU2Nv1ygGoUhRNIY7cQ1fiezwG/tgwWVVk9C0ZevTNYPDi1aavMYMFbWPYOIEDw65UfYn3QKVHaWakVWa6ZlH+0TuU0mtaeKLdOo/qUxGNM1qS66RrY9JDj5VhulJmVzFfDHUUY3aAMn10G/5ePcZl+hrsH9YJQy7BtagjaN0jHWgpzTuYmUcMvGGw3WwlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLFHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673666855079198457, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKb1yj2+csk+ohfYvHRGYr718A49UAg6PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDCHn/X9dcECUhpRSlIwBbJRNGAGMAXSUR0ChrXq20AtGdX2UKGgGaAloD0MIdOygEtcrb0CUhpRSlGgVTT4BaBZHQKGuiHD76551fZQoaAZoCWgPQwgawFsggZNxQJSGlFKUaBVNWAFoFkdAoa+zWuoxYnV9lChoBmgJaA9DCARVo1fDzHBAlIaUUpRoFU19AWgWR0Chsa9Gy5ZsdX2UKGgGaAloD0MIxCYycwHKbECUhpRSlGgVTW8BaBZHQKGy8RJVbRp1fZQoaAZoCWgPQwieJjPe1p5vQJSGlFKUaBVNXQFoFkdAobQX9rGipXV9lChoBmgJaA9DCOl/uRYtHG1AlIaUUpRoFU0pAWgWR0ChtbkTxoZidX2UKGgGaAloD0MIViqoqHq+bECUhpRSlGgVTWoBaBZHQKG3DvRZ2ZB1fZQoaAZoCWgPQwg730+N1wxyQJSGlFKUaBVNUwJoFkdAobkmD6Fds3V9lChoBmgJaA9DCFjnGJC9FG9AlIaUUpRoFU2CAWgWR0ChuxcVxjridX2UKGgGaAloD0MI38FPHEDFWECUhpRSlGgVTegDaBZHQKG/sVJtix51fZQoaAZoCWgPQwgw9fOmIsFtQJSGlFKUaBVNXAFoFkdAocDjL0SRKnV9lChoBmgJaA9DCJkNMslIpG9AlIaUUpRoFU08AWgWR0Chwf7mEGqxdX2UKGgGaAloD0MIsVJBRdWHKkCUhpRSlGgVTQ0BaBZHQKHDglDWsil1fZQoaAZoCWgPQwiN8PYghMpvQJSGlFKUaBVNSQFoFkdAocSGbAk9lnV9lChoBmgJaA9DCHnL1Y/NwXBAlIaUUpRoFU1lAWgWR0ChxbF7dBSldX2UKGgGaAloD0MIscOY9PfKbECUhpRSlGgVTVkBaBZHQKHHhwmVqvh1fZQoaAZoCWgPQwgIym37XkJwQJSGlFKUaBVNdwFoFkdAocjZxLkCFXV9lChoBmgJaA9DCKSJd4Anym9AlIaUUpRoFU2TAWgWR0ChyuMMRYigdX2UKGgGaAloD0MIpYXLKqzicECUhpRSlGgVTSUBaBZHQKHL5nV5KOF1fZQoaAZoCWgPQwiy1eWUgPdqQJSGlFKUaBVNVQFoFkdAoc0F1B+nZXV9lChoBmgJaA9DCGXequvQ4W9AlIaUUpRoFU1yAWgWR0ChzvU4aP0adX2UKGgGaAloD0MIoblOIy04bECUhpRSlGgVTVIBaBZHQKHQMS+QEIR1fZQoaAZoCWgPQwh3hqktdZhwQJSGlFKUaBVNjQFoFkdAodGG3H7xeHV9lChoBmgJaA9DCHXLDvEPdW9AlIaUUpRoFU14AWgWR0Ch03TfrKNidX2UKGgGaAloD0MIAYblzzeybkCUhpRSlGgVTYcBaBZHQKHUzYU34sV1fZQoaAZoCWgPQwhmguFcwxptQJSGlFKUaBVNcAFoFkdAodYh1klNUXV9lChoBmgJaA9DCD4/jBAea21AlIaUUpRoFU1SAWgWR0Ch19y44Ia+dX2UKGgGaAloD0MIt88qM6XpcUCUhpRSlGgVTYQBaBZHQKHZKL2HtWx1fZQoaAZoCWgPQwielbTi20hwQJSGlFKUaBVNogFoFkdAodqhEa2nbnV9lChoBmgJaA9DCFIq4Qm9+29AlIaUUpRoFU1rAWgWR0Ch3KbSZ0CBdX2UKGgGaAloD0MIrW2Kx8Xxb0CUhpRSlGgVTd8BaBZHQKHeT2vjfel1fZQoaAZoCWgPQwj3yycrhqxvQJSGlFKUaBVNTAFoFkdAoeAT3qRlpXV9lChoBmgJaA9DCCmvldBdPGxAlIaUUpRoFU08AWgWR0Ch4SJZfUnYdX2UKGgGaAloD0MIBADHnj3XV0CUhpRSlGgVTegDaBZHQKHl0Qo1DSh1fZQoaAZoCWgPQwiH3uLhPbxwQJSGlFKUaBVNLgFoFkdAoebM8PnSv3V9lChoBmgJaA9DCFMj9DN1lG9AlIaUUpRoFU1AAWgWR0Ch5+nTI/7jdX2UKGgGaAloD0MIRu7p6g55YUCUhpRSlGgVTegDaBZHQKHsUoLofSx1fZQoaAZoCWgPQwgShgFL7idwQJSGlFKUaBVNYQFoFkdAoe5BxT850nV9lChoBmgJaA9DCK/MW3WdW2BAlIaUUpRoFU3oA2gWR0Ch8391MdtEdX2UKGgGaAloD0MInYL8bGTobECUhpRSlGgVTWkBaBZHQKH0xpZfUnZ1fZQoaAZoCWgPQwjdBrXf2o1sQJSGlFKUaBVNYgFoFkdAofX74SHuZ3V9lChoBmgJaA9DCKsi3GTUEW5AlIaUUpRoFU1PAWgWR0Ch99VAAyVOdX2UKGgGaAloD0MIZoLhXEN7b0CUhpRSlGgVTWYBaBZHQKH5Bp/wy7B1fZQoaAZoCWgPQwjBc+/hkkhsQJSGlFKUaBVNfAFoFkdAofsBPTG5tnV9lChoBmgJaA9DCEzChTwCmXBAlIaUUpRoFU16AWgWR0Ch/Guz6ab4dX2UKGgGaAloD0MIcy7FVSVxcECUhpRSlGgVTU0BaBZHQKH9iJqIrOJ1fZQoaAZoCWgPQwhLy0i9J2RvQJSGlFKUaBVNXAFoFkdAof9IY1pCbHV9lChoBmgJaA9DCLnDJjLzVXFAlIaUUpRoFU0qAWgWR0CiAEqoqCpWdX2UKGgGaAloD0MIlIlbBTHgbkCUhpRSlGgVTV8BaBZHQKIBkhew9q11fZQoaAZoCWgPQwhQG9XpABlwQJSGlFKUaBVNcgFoFkdAogNzJhfBvnV9lChoBmgJaA9DCCbfbHPjuG1AlIaUUpRoFU1ZAWgWR0CiBLGcnVoYdX2UKGgGaAloD0MIl299WO+Zb0CUhpRSlGgVTXABaBZHQKIF9PAwfyR1fZQoaAZoCWgPQwh23sZmRwxyQJSGlFKUaBVNZAFoFkdAogfrTOPeYXV9lChoBmgJaA9DCIkoJm+AG21AlIaUUpRoFU1EAWgWR0CiCSIWxhUjdX2UKGgGaAloD0MIDmYTYBgkcECUhpRSlGgVTYIBaBZHQKIKeSowVTJ1fZQoaAZoCWgPQwjdC8wKRfxtQJSGlFKUaBVNRgFoFkdAogxI2Ifr8nV9lChoBmgJaA9DCErwhjSqfm1AlIaUUpRoFU1FAWgWR0CiDWjwpe/pdX2UKGgGaAloD0MI1v85zJdJb0CUhpRSlGgVTUABaBZHQKIOe8cMmWt1fZQoaAZoCWgPQwjvAiUF1gpwQJSGlFKUaBVNhAFoFkdAohB0TcqOLnV9lChoBmgJaA9DCDo978aChnFAlIaUUpRoFU1iAWgWR0CiEZ1GLDQ7dX2UKGgGaAloD0MIhKCjVa1gcECUhpRSlGgVTXkBaBZHQKIS69A5aNd1fZQoaAZoCWgPQwhF8pVAytxwQJSGlFKUaBVNuwNoFkdAohbMG5c1O3V9lChoBmgJaA9DCLadtkaE0m1AlIaUUpRoFU09AWgWR0CiGI8fvF3qdX2UKGgGaAloD0MIVwVqMXgPXUCUhpRSlGgVTegDaBZHQKIdR1s+FDh1fZQoaAZoCWgPQwjToj7JHcNtQJSGlFKUaBVNiQFoFkdAoh7EkQf6oHV9lChoBmgJaA9DCDlgV5Pn1XBAlIaUUpRoFU2+AWgWR0CiIG4bKifydX2UKGgGaAloD0MIOutTjslvbECUhpRSlGgVTTsBaBZHQKIiL9itq591fZQoaAZoCWgPQwjajNMQFWdwQJSGlFKUaBVNPwFoFkdAoiMxZSvTw3V9lChoBmgJaA9DCIqsNZTaaytAlIaUUpRoFUvSaBZHQKIj00OVgQZ1fZQoaAZoCWgPQwjKh6BqNCZwQJSGlFKUaBVNaAFoFkdAoiW6XBxgiXV9lChoBmgJaA9DCGGInL5em3BAlIaUUpRoFU1PAWgWR0CiJuyaEzwddX2UKGgGaAloD0MIQ8ajVEJBckCUhpRSlGgVTUYBaBZHQKIn+/XXiBJ1fZQoaAZoCWgPQwiv6xfshgZwQJSGlFKUaBVNegFoFkdAoiny3iJfpnV9lChoBmgJaA9DCLmLMEW5nktAlIaUUpRoFUvwaBZHQKIqtNucc2l1fZQoaAZoCWgPQwg+sOO/QLlvQJSGlFKUaBVNVQFoFkdAoiv0qSX+l3V9lChoBmgJaA9DCMWQnEzcM2xAlIaUUpRoFU1rAWgWR0CiLTzqrzXjdX2UKGgGaAloD0MIX7Uy4RfKbkCUhpRSlGgVTWUBaBZHQKIvKhBZ6ld1fZQoaAZoCWgPQwhSD9HoDthuQJSGlFKUaBVNQwFoFkdAojBBLkCFK3V9lChoBmgJaA9DCMWRByILgm5AlIaUUpRoFU1qAWgWR0CiMkL2QGOddX2UKGgGaAloD0MIqKs7FlsAb0CUhpRSlGgVTaUBaBZHQKIzzpX6qKh1fZQoaAZoCWgPQwgU56ijIzhyQJSGlFKUaBVNPgFoFkdAojTNjd56dHV9lChoBmgJaA9DCJIE4Qoot21AlIaUUpRoFU1XAWgWR0CiNrQ97ngYdX2UKGgGaAloD0MIvJaQDzqacUCUhpRSlGgVTSsBaBZHQKI3nlA/s3R1fZQoaAZoCWgPQwhBCwkY3ZNwQJSGlFKUaBVNWgFoFkdAojjarWAf+3V9lChoBmgJaA9DCJNWfEMhuHBAlIaUUpRoFU0SAWgWR0CiOboTfzjFdX2UKGgGaAloD0MI/+cwX16raUCUhpRSlGgVTZMBaBZHQKI7vy+YdAB1fZQoaAZoCWgPQwiSdqOP+RA/QJSGlFKUaBVNEAFoFkdAojyZJd0JW3V9lChoBmgJaA9DCAJ+jSTBhXFAlIaUUpRoFU1ZAWgWR0CiPbRQBPsSdX2UKGgGaAloD0MI/BnerMELXUCUhpRSlGgVTegDaBZHQKJCglUp/gB1fZQoaAZoCWgPQwjn/upx36JwQJSGlFKUaBVNFwFoFkdAokQWKTB68nV9lChoBmgJaA9DCFeyYyMQ4W9AlIaUUpRoFU1VAWgWR0CiRVAuyu6mdX2UKGgGaAloD0MIOGkaFM3qb0CUhpRSlGgVTUUBaBZHQKJGhNu+AVh1fZQoaAZoCWgPQwh2jZYDPe5uQJSGlFKUaBVNVQFoFkdAokhV0o0ALnV9lChoBmgJaA9DCFRU/UrnnW9AlIaUUpRoFU1PAWgWR0CiSXLMTviMdX2UKGgGaAloD0MIWixF8lX6cECUhpRSlGgVTVIBaBZHQKJKjDjzZpV1fZQoaAZoCWgPQwjiyW5mdGpuQJSGlFKUaBVNaAFoFkdAokxnKW9lE3V9lChoBmgJaA9DCC82rRQC/2VAlIaUUpRoFU3oA2gWR0CiUP0/GEPEdX2UKGgGaAloD0MI0a+tn/5WbUCUhpRSlGgVTVwBaBZHQKJSHfdAPd51fZQoaAZoCWgPQwhz2lNyzhJvQJSGlFKUaBVNMQFoFkdAolMbCiyprHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (196 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 240.11750839555143, "std_reward": 49.95567618832196, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-14T04:23:47.306626"}
|